• ベストアンサー

ZkはZmとZnの(1<m,n∈N)直和の部分群⇔kがLCM(m,n)の約数

こんにちは。 ZkはZmとZnの(1<m,n∈N)直和の部分群 ⇔ kがLCM(m,n)の約数 で正しいでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • ojisan7
  • ベストアンサー率47% (489/1029)
回答No.2

言おうとしていることは分かりますが、ちょっと表現がおかしいですね。 m,nを互いに素な自然数としたとき、 Zmn=Zm(〇+)Zn の部分群の個数はmnの約数であり、それぞれの部分群の位数はmnの約数です。しかし、Zmnの部分群はZkでしょうか?もう一度、「有限生成アーベル群の基本定理」を復習してみるととをお薦めします。 直和であるためには、GCM(m,n)=1でなければなりません。たとえば、 Z3(〇+)Z16の要素を(x,y)と表したとき、要素(2,5)は、3で割れば2余り、16で割れば5余る整数の代表元です。従って、中国剰余定理より、LCM(3,16)=48を法とする解が求まることになります。GCM(m,n)≠1ならば、解の一意性が保証されませんので、直和にはなりません。

giefgk
質問者

お礼

どうも有り難うございました。 お陰様で勉強になりました。

その他の回答 (1)

  • rabbit_cat
  • ベストアンサー率40% (829/2062)
回答No.1

ZkはZmとZnの(1<m,n∈N)直和の部分群 っていう表現がよくわからないのですが. 普通に考えれば,k,m,nがそれぞれ異なるとき,ZkとZmとZnには共通の元は1つもないので,ZkがZmとZnの直和の部分群になることはありえないような.

giefgk
質問者

お礼

有り難うございます。 > ZkはZmとZnの(1<m,n∈N)直和の部分群 > っていう表現がよくわからないのですが. 群Z3(〇+)Z16は幾つの部分群を持っているか?(〇+は直和の記号と思われます) という問題を見つけまして その解答は Z3(〇+)Z16はアーベル群でGDC(3,16)=1なので位数3×6=48を持つ。 従って、部分群の個数は48の正の約数の個数に等しい。 その約数は1,2,3,4,6,8,12,16,24,48なので 答え10個 となっています。 それで下記のような命題が成立つのかなと思い立ちました。 ZkはZmとZnの(1<m,n∈N)直和の部分群 ⇔ kがLCM(m,n)の約数

関連するQ&A

  • nΣk=1 k(k+1)=1/3n(n-1)(n+2)

    が理解出来ません。 k(k+1)=1/3(Tk+1-Tk)までは理解出来ますが… Σkは 1/2n(n+1)です。 Σk(k+1)= 1/2n(n+1){1/2n(n+2)}では無いのですか? 1/2は…一体どこへ???

  • 1.自然数nの正の約数において、1を含み、nを含まない約数の総和がnに

    1.自然数nの正の約数において、1を含み、nを含まない約数の総和がnに等しいとき、nを完全数という。 (1)20および28は完全数かどうか調べよ。 (2)p,qを互いに異なる素数として、n=pqとおく。nが完全数のとき、pをqを用いて表せ。  さらに、n=pqの形の完全数nを求めよ。 (3)pを素数として、n=p4乗とおく。このとき、どのような素数pに対してもnは完全数とはならないことを証明せよ。 2.次の3直線l,m,nで囲まれる三角形の周および内部の領域をDとおく。    l:3x-4y+1=0 m:x-4y+3=0 n:5x+4y-33=0 (1) lとmの交点をA,mとnの交点をB,nとlの交点をCとおくとき、A,B,Cの座標を求めよ。 (2) 点(x,y)が領域D内の点であるとき、(x-3)2乗+(y-1)2乗の最大値と最小値を求めよ。   また、最大値および最小値を与える点(x,y)も求めよ。 (3) 領域D内の点Pを中心とする半径1の円がある。点Pが領域D内のすべてを動くとき、円が通過する部分の面積を求めよ。 上記2問、どうしても解けません。 申し訳ありませんが、お助け下さい。

  • 「V=M(+)N且つV=M(+)WならばN=W ((+)は直和記号)」は偽?

    宜しくお願い致します。 [問]Vを有限次元実線形空間とし、M,N,Wをその部分空間とする。 「V=M(+)N且つV=M(+)WならばN=W ((+)は直和記号)」は偽みたいなのですが 何故なのなのでしょう? 反例は何がありますでしょうか?

  • lim(n→∞) Σ(k=1,n) n*(5/6)^n

    lim(n→∞) Σ(k=1,n) n*(5/6)^n この計算はどう解けばいいのでしょうか? Σの部分の計算ド忘れしてしまいました。 Σr^n=r(r^n-1)/(r-1) Σn=n(n+1)/2 は覚えてますが、確か中身が掛け算されてるのってΣとΣで分解できないですよね? つまり、Σf(x)*g(x)≠Σf(x)*Σg(x)ですよね? 計算に躓いてこまってます。よろしくお願いします。

  • Hを有限群Gの部分群・・・Nの位数lNlと指数

    Hを有限群Gの部分群、NをGの正規部分群とする。 Nの位数lNlと指数(G:N)とが互いに素、lHlがlNlの約数とする。 このときH(Nであることを証明せよ。 まったくわかりません。 ヒントでもいいのでよろしくお願いします!

  • 可換群Gの二つの元a,bのそれぞれの位数m,nが

    可換群Gの二つの元a,bのそれぞれの位数m,nが 互いに素ならば、abの位数はmnである。 この証明が分からないです。 あと、位数m,nが互いに素なようになる可換群はどのようなものがあるでしょうか? 例えばmodの世界において考えると、 mod nの時、位数はn-1の約数になるので互いに素にはならないと思うのです。 そもそもが間違えているかもしれません。 優しく教えていただければ幸いです。 よろしくお願いします。

  • Σ{k=1~n}{1/k-1/(k+1)}の解き方を教えてください。

    Σ{k=1~n}{1/k-1/(k+1)}の解き方を教えてください。 こんにちは。よろしくお願いします。 シグマの式の書き方がこれでいいのかわからないですが・・・。 解答では、 Σ{k=1~n}{1/k-1/(k+1)}=1-1/(n+1)=n/(n+1) となっていましたが、よくわかりません。 Σ{k=1~n}k を全部逆数にしたらいいのかと思ったのですが、そうなると、1/(k+1)の部分がよくわからない・・。 元々、1/(k^2+k)だったから、 Σ{k=1~n}{1/(k^2+k)}=6/{n(n+1)(2n+1)}+2/{n(n+1)} とやってみたのですが、答えにたどり着きそうもないし・・・ よろしくお願いします

  • (Σa_n・x^n)^m

    mを自然数として(Σ[n=0↑∞]a_n・x^n)^mが収束する場合にこれをべき級数で表した時のx^kの係数の計算の仕方がよくわかりません。a_nやxは実数とします。 Σ[n=0↑∞]Σ[n=n_1+n_2+…+n_m]a_n_1・a_n_2・…・a_n_m・x^nとして a_n_1・a_n_2・…・a_n_m=a_0^i_0・a_1^i_1・…・a_j^i_j・… と表すと有限個のjについてi_j>0でΣ[j=0↑∞]i_j=mであってnを固定するとこの係数をもつ項がm!/(i_1!・i_2!・…・i_n!)個あると考えればいいのかと思ったのですがこの推論は間違っているようです。 別のやり方としてx=0でのk次微分係数を計算してk!で割ればいいと思ったのですが具体的な計算ができませんでした。

  • Π[k=1,n](3k-2)!/(n+k-1)!

    あみだくじの数学という本で、対称群を拡張した一般単調三角形の集合(generalized monotone triangle)L(S_n)というのを聞きました。 その要素の個数は、 1!4!7!10!…(3n-2)!/n!(n+1)!(n+2)!…(2n-1)! らしいです。その式を見て、なぜそれが整数になるのかが疑問に思いました。

  • f(n)=(1)^n+(2)^n+(3)^n+(4)^n

    nは自然数 f(n)=(1)^n+(2)^n+(3)^n+(4)^n f(n)を5で割った余りをr(n)とする。 (1)r(n)は g(n)=(1)^n+(2)^n+(-2)^n+(-1)^n  を5で割った余りと等しいことを示せ。 (2)r(n)=0を満たすnをすべて答えよ。 (1)は f(n)-g(n)=5t と置いて、数学的帰納法で解くのが良いのでしょうか? f(n)-g(n)=(3)^n+(4)^n-(-2)^n-(-1)^n=5t n=1のとき f(n)-g(n)=3+4+2+1=10 → OK n=kの時成立すると仮定して n=k+1の時 (3)^(k+1)+(4)^(k+1)-(-2)^(k+1)-(-1)^(k+1) =(3)^(k+1)+4{5t-3^k+(-2)^k+(-1)^k}-(-2)^(k+1)-(-1)^(k+1) =-3^k+20t+6(-2)^k+5(-1)^k ここで -3^k+6(-2)^k を帰納法で5の倍数と証明して f(n)-g(n)=5t と証明できる。 他の証明方法はないのでしょうか? (2)はどのようにすればよいか分かりません。 教えてください。 お願い致します。