• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:連結とHausdorffについて)

連結とHausdorffについて

このQ&Aのポイント
  • 『(X,T)を位相空間とする。∃G1,G2∈T such that X=G1∪G2,G1∩G2=φ の時、Xは非連結であるという』と載ってましたので『(X,T)を位相空間とする。∀G1,G2∈T、X≠G1∪G2,G1∩G2=φ の時、Xは連結であるという』が連結の定義かと思います。よってこれからXの部分集合での連結の定義は『(X,T)を位相空間とする。φ≠A⊂Xにおいても位相空間がとれ、その位相をTaとすると ∀G1,G2∈Ta、A≠G1∪G2,G1∩G2=φ の時、Aは連結であるという』だと思います。間違ってましたらご指摘ください。
  • また、Hausdorff空間の定義は『位相空間Xとし、X∋∀x,y:distinctにおいて X⊃∃Ux,Uy:近傍 such that x∈Ux,y∈Uy,Ux∩Uy=φ の時、XはHausdorff空間をなす』だと思います。
  • Xを位相空間とし、φ≠A,B,C⊂X(但し、A⊂B⊂CでAはBの真部分集合でBはCの真部分集合)とする。このとき、 「AとCが連結ならばBは連結になる」が偽。 と 「AとCがHausdorffならばBもHausdorffになる」が偽を示したいのですが それぞれの反例として何が挙げれますでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

A1です。 間違えました。C={0,1,2},T={φ,{0},{2},{0,1},{1,2},{0,2},{0,1,2}} は開集合系の定義をみたしていません。 {0,1}∩{1,2}={1}が開集合系に入っていません。 外の例を考えてみましたがちょっと思いつきませんでした。 思いついたら回答します。

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

回答No.1

「AとCが連結ならばBは連結になる」が偽。 この場合はC=R^2(Euclid空間)、A={(x,y)|x^2+y^2<1},B=Aおよび{(x,y)| (x-2)^2+y^2<1}とします。 このときA,Cは連結ですが、Bは非連結です。{(x,y)|x^2+y^2<1}と {(x,y)|(x-2)^2+y^2<1}に分かれるからです。 「AとCがHausdorffならばBもHausdorffになる」が偽 これはC={0,1,2},T={φ,{0},{2},{0,1},{1,2},{0,2},{0,1,2}}とおくと Tは開集合系の定義を満たしています。 A={0},B={1,2}とおきます。TA={φ、{0}}、TB={φ,{0},{0,1}}となりま す。A,Cはハウスドルフですが、Bはちがいます。0と1を分離できません。

giefgk
質問者

お礼

有り難うございます。 > 「AとCが連結ならばBは連結になる」が偽。 > この場合はC=R^2(Euclid空間)、A={(x,y)|x^2+y^2<1},B=A∪{(x,y)| > (x-2)^2+y^2<1}とします。 > このときA,Cは連結ですが、Bは非連結です。{(x,y)|x^2+y^2<1}と > {(x,y)|(x-2)^2+y^2<1}に分かれるからです。 {(x,y)|x^2+y^2<1},{(x,y)|(x-2)^2+y^2<1}∈T_B (T_B:Bの位相) で、この場合は B={(x,y)|x^2+y^2<1}∪{(x,y)|(x-2)^2+y^2<1} ({(x,y)|x^2+y^2<1}∩{(x,y)|(x-2)^2+y^2<1}=φ) とできる 即ち、 『(X,T)を位相空間とする。 ∃G1,G2∈T such that X=G1∪G2,G1∩G2=φ の時、Xは非連結であるという』 のG1,G2として G1={(x,y)|x^2+y^2<1}, G2={(x,y)|(x-2)^2+y^2<1} が採れるから、Bは非連結という訳ですね。 > 「AとCがHausdorffならばBもHausdorffになる」が偽 > これはC={0,1,2},T={φ,{0},{2},{0,1},{1,2},{0,2},{0,1,2}}とおくと > Tは開集合系の定義を満たしています。 > A={0},B={1,2}とおきます。TA={φ、{0}}、TB={φ,{0},{0,1}}となりま > す。A,Cはハウスドルフですが、 えーと、Aは一点集合だから x,y:distinct∈A なるx,yが採れないのにどうしてAはHausdorffと言えるのでしょうか? Cについては例えば 0,1∈Cを採ると0∈{0},1∈{1,2} ({0}∩{1,2}=φ)という近傍が採れますね。 >Bはちがいます。0と1を分離できません。 B={1,2}ではなくB={0,1}の間違いですかね。 もし、 TB={φ,{0},{0,1}}ではなく、 TB={φ,{0},{1},{0,1}} として位相Bを定めればBはHaurdorffとなるのですね。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • p:X→Yを商写像とせよ。もし各p^-1({y})が連結でYが連結ならばXは連結

    p:X→Yを商写像とせよ。もし各p^-1({y})が連結でYが連結ならばXは連結である。 の問題です。 XとYの位相をそれぞれTとSとするとpは商写像だと言うのだからpは全射で s∈S⇔p^-1(s)∈T と書け、 各p^-1({y})が連結だからp^-1({y})の位相として相対位相T_(y):={p^-1({y})∩t;t∈T}が採れ, φ≠∀A,B∈T_(y),p^-1({y})=A∪BならばA∩B≠φ Yが連結だからφ≠∀A,B∈S,Y=A∪BならばA∩B≠φ でこれらからφ≠∀A,B∈T,X=A∪BならばA∩B≠φ を示したいのですがφ≠∀A,B∈Tに対して A∩B⊂p^-1(p(A∩B)) とからどうすればいいのかわかりません。 また,仮にφ≠∃A,B∈T,X=A∪BでA∩B=φと結論を否定してみると B=A^cで開集合の定義からBは閉集合でB∈Tに反する。 となりましたがそんなに簡単じゃありませんよね。 どうかご教示ください。

  • 弧状連結

    集合X={1,2,3}の位相Aを A = {空集合,{1},{1,2},{1,3},X} で定めた時、位相空間(X,A)は弧状連結である という例が参考書に載っていました。なぜこれは弧状連結といえるのでしょうか?

  • 連結について

    位相空間Xにおいて、Aを稠密な集合とするとき、商空間X/Aは連結であることを証明せよ。 (ただし     x,y∈Xについて     x~y⇔x=y またはx,y∈Aとする。    P:X→X/~,射影    T={H:HのPによる逆像がXの開集合}    X/A=(X/A,T)とする。        ) この問題の証明で分からないところがあるので教えて頂きたいと思います。 本の解答には 証明)P(A)=yとする。{y}は連結で、かつX/Aで稠密。と書いてありました。 質問1.商集合というのは集合族ですよね? 質問2.P(A)も集合族ではないのですか? 質問3.P(A)は1つの同値類から成る集合族だと思うのですが、合ってますか? あと、この問題の証明を解説してもらえると嬉しいです。 よろしくお願いします。

  • 弧連結とは?

    http://ja.wikipedia.org/wiki/%E9%80%A3%E7%B5%90%E7%A9%BA%E9%96%93 集合Xが連結であり、且つ局所連結であるとき、弧状連結になるそうなのですが、 局所連結の意味がよく分かりません。 上記のページでは、sin(1/x) のグラフ(topologist's sine curve; 位相幾何学者の正弦曲線)は連結だが弧状連結でない位相空間の例として挙げることができる、と書かれてあるのですが、 sin(1/x)はなぜ局所連結ではない、ということが分かるのでしょうか? どなたか易しく教えて下さい。

  • lim[x→∞]f(x)の位相での定義は?

    よろしくお願い致します。 『0<∀ε∈R,0<∃δ∈R;0<|x-a|<δ⇒|f(a)-f(x)|<ε』 は 『2つの位相空間(X, T)、(Y, S) と map f;X→Y と L:={b∈Y;∀ε∈nbhd(b),∃δ∈nbhd(a) such that f(δ)⊂ε}(a ∈X)に於いて、 L≠φ の時、f(x)はLに収束するといい limf(x):=L x→a と表記する。そして、L=φの時、f(x)は発散すると言う』 という具合に一般で定義できると思います。 『0<∀ε∈R,0<∃δ∈R;δ<x⇒ε<f(x)』や 『0<∀ε∈R,0<∃δ∈R;δ<x⇒-ε>f(x)』 に就いては、 『Bは位相空間(X*,T*)の部分集合Aの開被覆である』 の定義は 『T* の部分集合Bに於いて、A⊂∪[b∈B]b』 『位相空間(X*,T*)の部分集合Aはコンパクトである』 の定義は 『X* の部分集合Aの任意の開被覆B(⊂T*)に対し、∃{b1,b2,…,bn} ⊂B (n∈N) such that A⊂∪[i=1 to n]bi』 『位相空間(X*,T*)はコンパクト空間をなす』 の定義は 『位相空間(X*,T*)の部分集合X* はコンパクトである』 『位相空間(X,T)が位相空間(X*,T*)の中で稠密である』 の定義は 『X⊂X* 且つ φ≠∀A∈T* に対して,A∩X≠φ』 『位相空間(X*,T*)は位相空間(X,T)のコンパクト化である』 の定義は 『X* はコンパクト空間 且つ XはX* の中で稠密である』 従って、『x→∞』の定義は『xをa∈X* に近づける』を意味す るので εとδを使うと、 2つの位相空間 (X,T)、(Y,S) と map f: X → Y があり、位 相空間(X*,T*)は(X,T)のコンパクト化である時、 L:={b∈Y;∀ε∈nbhd(b,(Y,S)),∃δ∈nbhd(a,(X,T)) such that f(δ)⊂ε}(a∈X*)に於いて、 L≠φ の時、f(x)はLに収束するといい lim f(x):=L x→a と表記し、 L=φの時、f(x)は発散すると言う。 例:実数体RではX*はR∪{+∞,-∞}に相当し、a∈{+∞,-∞} と定義してみたのですが、 どんな位相空間(X,T)やコンパクト化(X*,T*)では良いという訳ではなく、 夫々に何らかの条件を付け加えねばならないような気がします。 どのような条件を付ければ 『0<∀ε∈R,0<∃δ∈R;δ<x⇒ε<f(x)』や 『0<∀ε∈R,0<∃δ∈R;δ<x⇒-ε>f(x)』 の一般での定義が完成しますでしょうか?

  • 集合と位相

    (1)X,Yは位相空間とする。A,BがそれぞれX,Yの開集合であるときA×Bは直積位相X×Yの閉集合であることを示せ。 (2){Xλ}λ∈Λを位相空間の族としてAλ⊂Xλ(λ∈Λ)とする。 この時直積位相空間Πλ∈ΛXλにおいて以下を示せ。 (閉包のバーの書き方がわからないのでclと表記します) (a)cl(Πλ∈ΛAλ)=Πλ∈ΛclAλを示せ。 (b)Λは無限集合であるとき、Int(Πλ∈ΛAλ)≠φであるための必要十分条件は有限個のIntAλ≠φであり、かつその他のλについてはAλ=Xλであることを示せ。 (1)は以下のように考えたのですがわかりません。 Aの補集合、Bの補集合はそれぞれX,Yの開集合となる。 よってA^c×B^cは直積位相X×Yの開集合となる。 また(A×B)^c=(A^c×Y)∪(X×B^c) ここで詰まってしまいました。友人に聞いてみたら、 「生成する」位相という言葉の定義がわかってないと言われました。これはどのような意味なのでしょうか? 例えは直積位相の定義にもありました。 X,Yが位相空間でそれぞれの位相をЦx、Цyとした時に Цx×Цy={O1×O2|O1∈Цx,O2∈Цy}が生成する位相を直積位相という。 また位相を「入れる」ということはどういう意味なのでしょうか? (2)(a)は次のように考えてみましたがどうでしょうか? (⊃) ∀x∈Πλ∈ΛclAλを取る。∃λ∈Λ s.t. x∈clAλであるから xの任意の近傍はAλと交わる。したがってxの近傍はAλよりも大きい集合Π(λ∈Λ)Aλとも交わるので、 xはcl(Π(λ∈Λ) Aλ)の点になる。 (⊂) ∀x∈cl(Π(λ∈Λ) Aλ)を取る。 xの任意の近傍とΠ(λ∈Λ)Aλは交わるから、 あるAλと任意の近傍は交わる。これよりx∈clAλ よってx∈Πλ∈ΛclAλ (b)はわかりませんでした。アドバイスお願いします。

  • 直積位相定義が2個の直積の場合に合致してるか?

    直積位相の定義についての質問です。 [定義ア]位相空間(X_λ,T_λ) (λ∈Λ(Λは任意の添数集合))と射影fが与えられていて,直積集合P:=ΠX_λとおく。 この時,X_λ⊃{f_λ^-1(t_λ)∈2^P;t_λ∈T_λ}=:S_λをf_λによって誘導される(X_λ,T_λ)の位相と呼ぶ。 次に和集合B:=∪S_λと置き, この時,このBから生成される位相{U∈2^P;∀x∈U,∃b∈B such that x∈b⊂U} を直積集合Pの直積位相と呼ぶ。 が直積位相の定義だと思います。 [定義イ]2個の直積(X_1,T_1)×(X_2,T_2)の場合の直積位相は{∪[g∈G]g ;G⊂T_1×T_2}と載ってました。 [定義ウ]集合Xの部分集合族Bが以下の条件を満たすときBをXの開基という (1)BはXを被覆する (2)任意のb1,b2∈Bおよび任意のx∈b1∩b2に対して、あるb∈Bが存在して、x∈b⊂b1∩b2となる。 [定義エ] Bを集合Xの開基とする時,{U∈2^X;∀x∈U,∃b∈B such that x∈b⊂U}をBによって生成される位相という。 そこで定義アの直積位相定義が2個の直積の場合に定義イと合致してるか調べています。 まずS_1={f_1^-1(t_1);t_1∈T_1},S_2={f_2^-1(t_2);t_2∈T_2}でB:=S_1∪S_2と置く。 そしてこのBによって生成される位相は{U∈2^(X_1×X_2);∀x∈U,∃b∈B such that x∈b⊂U}:=L これが{∪[g∈G]g;G⊂T_1×T_2}:=Mに一致してるか吟味してみます。 (i) L⊂Mを示す。 ∀U∈Lを採ると,∀x∈Uに対してx∈b⊂Uなるb∈Bが存在する。 Bの定義よりb={f_1^-1(t_1),f_2^-1(t_2)}という集合になっています。 そこで結局の所,Uは常にbを含んでいなければならない訳ですからU=∪[b∈B']b (但しB'⊂B)…(1)となっていますよね。 所でBの元達はというとB:=S_1∪S_2な訳ですから(1)は U={(t_1×x_2)∪(x_1×t_2);x_1⊂X_1,x_2⊂X_2}という形になってますよね。 ここでx_1やx_2は必ずしもT_1やT_2の元とは限らないわけですよね。 なのでこのUは∪[g∈G]g;G⊂T_1×T_2には含まれませんよね。 どうすればLとMが合致しますでしょうか? それとも直積位相は2個の直積集合の場合と3個以上の直積集合の場合とでのそれぞれ直積位相の概念は異なるのでしょうか?

  • 位相空間についての質問です。

    位相空間(T,Ot)(Tは集合でOtは位相)として、a,b,cはTの元とします。 連続写像φ:[0,1]→T、φ(0)=a、φ(1)=bが存在して、 連続写像ψ:[0,1]→T、ψ(0)=b、ψ(1)=cが存在するとします。 このとき、連続写像g:[0,1]→T、g(0)=a、g(1)=cは存在するのでしょうか? もし存在するなら証明してほしいです。 自分の持ってる教科書の連続写像の定義は、 f:(T,Ot)→(S,Os)が点a∈Tで連続。 ⇔f(a)∈Uとなる任意のU∈Osに対して、あるV∈Ot,a∈Vが存在して、f(V)Uとなる。 と定めています。 一応、自分で考えたのは、 g:[0,1]→T、g(x)=φ(2x)(0≦x≦1/2)、g(x)=ψ(2x−1)(1/2≦x≦1)なのですが、x=1/2で連続なのかわかりません。g:[0,1/2]→T, g:[1/2,1]→Tは連続だと思います。 g(1/2)∈Uとなる開集合U⊂Tを任意に取ります。 g:[0,1/2]→Tの連続性から1/2∈V1、V1⊂[0,1/2] となる開集合が存在してg(V1)⊂Uで、 g:[1/2,1]→Tの連続性から1/2∈V2、V2⊂[1/2,1] となる開集合が存在してg(V2)⊂Uとなる事はわかります。 V1もV2も[0,1]の相対位相の元なので、V1UV2は、[0,1]の開集合となるのかわからないです。 (V1もV2も[0,1]の位相の元([0,1]の開集合)ならば、V1UV2は、[0,1]の開集合となる事はわかります。)

  • 位相 初心者です。

    「AとBが位相空間Xの開集合ならば、A×Bは直積位相空間X^2の 開集合である。」 上記の内容は、定義ですか、それとも定理ですか。 定理であれば、証明の考え方を教えてください。

  • {A_n}をA_n∩A_n+1≠φであるような連結なXの部分空間なら∪[n=1..∞]A_nは連結である事を示せ

    たびたびすいません。 {A_n}をA_n∩A_n+1≠φであるような連結なXの部分空間の列とする。 ∪[n=1..∞]A_nは連結である事を示せ。 という問題が多分解けてません。 Xの位相をTとするとA_nは部分空間なのだからA_nの位相はT_n:={A_n∩t;t∈T}と書ける。 ∪[n=1..∞]A_nの位相として∪[n=1..∞]T_nが採れる。 そして各A_nが連結なのだから ∀U,V∈T_nに対し,A_n=U∪VでU∩V≠φ よって ∀U,V∈∪[n=1..∞]T_nに対し,∪[n=1..∞]A_n=U∪VでU∩V≠φ と結論づいたのですが自信がありません。 どのようにして示せますでしょうか? すいません。お力をお貸しください。

モーメントの計算方法とは?
このQ&Aのポイント
  • 左側の荷(W)をクランプした場合、左右のリニアブッシュにかかるモーメントについて、左側はP1×L1、右側はP2×L2となりますか?
  • 写真のように左側の荷(W)をクランプすると、左右のリニアブッシュにかかるモーメントにはどのような関係がありますか?
  • 左側の荷(W)をクランプした場合、左右のリニアブッシュにかかるモーメントの計算方法はどのようなものですか?
回答を見る