OKWAVEのAI「あい」が美容・健康の悩みに最適な回答をご提案!
-PR-
解決
済み

A・B=B・AならばAの固有ベクトルはBの固有ベクトルである

  • 暇なときにでも
  • 質問No.229649
  • 閲覧数802
  • ありがとう数5
  • 気になる数0
  • 回答数2
  • コメント数0

お礼率 41% (79/189)

A,Bをそれぞれn次正方行列とする
命題1:
「A・B=B・AのときAの固有ベクトルはBの固有ベクトルである」
これは反証がすぐに得られるので偽である
命題2:
「A・B=B・AでありAの任意の固有値に対する固有ベクトル空間が1次元のときAの固有ベクトルはBの固有ベクトルである」
kony0氏の証明より
vをAの固有ベクトルとしたときaを適当な複素数としてA・v=a・v
一方A・(B・v)=(A・B)・v=B・(A・v)=B・(a・v)=a・(B・v)
従ってB・vはAの固有値aの1次元固有ベクトル空間に含まれるから
適当な複素数bが存在してB・v=b・v

命題1に代わる真の命題があれば証明付きで教えてください
通報する
  • 回答数2
  • 気になる
    質問をブックマークします。
    マイページでまとめて確認できます。

質問者が選んだベストアンサー

  • 回答No.2
レベル9

ベストアンサー率 63% (45/71)

元の表記は、
「二つのエルミート行列が同一のユニタリー変換によって対角化される
ことの必要十分条件は、それらが可換であることである。」
で、質問に沿うように私が書き換えました。

> 「A、Bがエルミート行列で、A・B=B・A(可換)ならば、Aの
> 固有ベクトルとBの固有ベクトルを共通にとることができる。」
> 意味は
> 「A、Bがエルミート行列で、A・B=B・A(可換)ならば、Aの
> 固有ベクトルであってBの固有ベクトルであるものが存在する」
> ですか?

このあたり、誤解を招く言い方ですみません。
固有ベクトルは対角化したときのユニタリー行列の列ベクトルに
なっているのですから、同一のユニタリー変換で対角化されると
いうことは、同じ固有ベクトルの(こういう言い方がいいのかどうか)
セットが存在します。こういう意味なのですが、わかりますでしょうか。

> 「Aの固有値の数とAの固有ベクトル空間の次元」と
> 「Bの固有値の数とBの固有ベクトル空間の次元」に対する関わりは
> ないのですか?

A、Bとも、固有値の数はn、固有ベクトル空間の次元もnです。
固有値の数は、縮退(重根がある場合)していても数えています。

> もっと一般的に
> 「A・B=B・AならばλをAの任意の固有値としたときλを
> 固有値とするAの固有ベクトルであってBの固有ベクトルである
> ベクトルが存在する」
> は正しくないですか?

んー、そこは私にはわかりません。

昔、量子力学を勉強したのを復習しつつ書いていますので、
間違いがあるかもしれません。
一応「自身なし」としておきます。
補足コメント
nuubou

お礼率 41% (79/189)

「正方行列A,Bが対角化可能でA・B=B・AならばP^(-1)・A・P,P^(-1)・B・Pがともに対角行列になるような正方行列Pが存在する」
というのがあるようですね

どうもありがとうございました
投稿日時 - 2002-03-06 11:00:25
お礼コメント
nuubou

お礼率 41% (79/189)

physicist_nakaさんの定理をいろいろ調べていくとさらに一般的な

「n次正規行列A,Bが同じユニタリ行列Uで対角化できるための必要十分条件は
A・B=B・Aが成り立つことである」
というのがありました

どもありがとうございました
投稿日時 - 2002-03-06 13:49:09
-PR-
-PR-

その他の回答 (全1件)

  • 回答No.1
レベル9

ベストアンサー率 63% (45/71)

物理の量子力学で出てくるのですが、 「A、Bがエルミート行列で、A・B=B・A(可換)ならば、Aの固有 ベクトルとBの固有ベクトルを共通にとることができる。」 というのがあります。 つまり、A、Bとも、同じユニタリー変換で対角化出来ます。 証明は量子力学の本に書いていますが、 ちょっと面倒そうですのでパスさせてください。 以下参考です。 A、Bは物理量を意味し(例えばエネルギー、角運動 ...続きを読む
物理の量子力学で出てくるのですが、
「A、Bがエルミート行列で、A・B=B・A(可換)ならば、Aの固有
ベクトルとBの固有ベクトルを共通にとることができる。」
というのがあります。
つまり、A、Bとも、同じユニタリー変換で対角化出来ます。
証明は量子力学の本に書いていますが、
ちょっと面倒そうですのでパスさせてください。

以下参考です。
A、Bは物理量を意味し(例えばエネルギー、角運動量等)、
固有値は、その物理量を測定したときの値になります。
ですから、固有値は実数でなければならず、そのためA、Bはエルミート
行列でなければなりません。
固有ベクトルは、測定で、ある固有値が観測されたときに、その固有値に
対応する状態を意味します。
A、Bが可換であることは、同時に確定値を有する状態が存在することを
意味します。
補足コメント
nuubou

お礼率 41% (79/189)

「A、Bがエルミート行列で、A・B=B・A(可換)ならば、Aの固有ベクトルとBの固有ベクトルを共通にとることができる。」
意味は
「A、Bがエルミート行列で、A・B=B・A(可換)ならば、Aの固有ベクトルであってBの固有ベクトルであるものが存在する」
ですか?
「Aの固有値の数とAの固有ベクトル空間の次元」と
「Bの固有値の数とBの固有ベクトル空間の次元」に対する関わりはないのですか?
もし詳しい表記があるのなら教えてください
よろしくお願いします
投稿日時 - 2002-03-05 23:22:41
お礼コメント
nuubou

お礼率 41% (79/189)

もっと一般的に
「A・B=B・AならばλをAの任意の固有値としたときλを固有値とするAの固有ベクトルであってBの固有ベクトルであるベクトルが存在する」
は正しくないですか?
投稿日時 - 2002-03-06 00:45:58

このQ&Aで解決しましたか?
関連するQ&A
-PR-
-PR-
このQ&Aにこう思った!同じようなことあった!感想や体験を書こう
このQ&Aにはまだコメントがありません。
あなたの思ったこと、知っていることをここにコメントしてみましょう。

その他の関連するQ&A、テーマをキーワードで探す

キーワードでQ&A、テーマを検索する
-PR-
-PR-
-PR-

特集


いま みんなが気になるQ&A

関連するQ&A

-PR-

ピックアップ

-PR-
ページ先頭へ