OKWAVEのAI「あい」が美容・健康の悩みに最適な回答をご提案!
-PR-
解決
済み

楕円の体積の求め方、教えてください!

  • すぐに回答を!
  • 質問No.224844
  • 閲覧数5215
  • ありがとう数10
  • 気になる数0
  • 回答数5
  • コメント数0

お礼率 66% (22/33)

タイトルどおりなのですが、楕円の体積の公式を知っていらっしゃる方、教えていただけないでしょうか。。。むかしにやった覚えだけはあるのですが、はっきりとおもいだせないのです。
ちなみに、楕円の縦の長さと横の長さがわかっています。
よろしくお願いいたします。
通報する
  • 回答数5
  • 気になる
    質問をブックマークします。
    マイページでまとめて確認できます。

質問者が選んだベストアンサー

  • 回答No.4
レベル12

ベストアンサー率 35% (302/848)

数学や科学については、公式を丸暗記するだけではなく、その性質を理解するように努めれば、たとえ公式を忘れたとしても他の問題から導くことが多いことを頭にいれておいてくださいね。

楕円は、正円を1方向につぶしただけの図形ですから、円の面積を単純にその扁平分だけ減少(または増加)させればいいだけです。#1の人に倣って、
 長半径=a(こちらを元の円の半径とします)
 短半径=b
とすれば、
 楕円の面積=円の面積×b/a
      =πa^2×b/a
      =πa×b
ですね。

同様に、楕円の回転体も球を変形させただけですから、
 楕円の体積=球の体積×b/a
      =4/3×πa^3 ×b/a
      =4/3×πa^2×b
でよいでしょう。

球の体積を忘れたら、底面の半径と高さが球の半径と同じ円錐を用意して、半球と(逆さまに見た)円錐の断面積の和が常に底面の面積と同じという性質を利用すれば、簡単に導けます。(円錐の底面に平行に断面を取りましょう。)

以上。
お礼コメント
hoppe

お礼率 66% (22/33)

ありがとうございました!とてもよくわかりました。きちんと理解して覚えないと、いけませんね^^;
投稿日時 - 2002-02-26 14:03:12
-PR-
-PR-

その他の回答 (全4件)

  • 回答No.1
レベル14

ベストアンサー率 49% (1127/2292)

楕円は平面図形なので体積はありません。 面積なら 長半径=a 短半径=b とすると abπ で求まりますが。 ...続きを読む
楕円は平面図形なので体積はありません。

面積なら
長半径=a 短半径=b
とすると abπ で求まりますが。
補足コメント
hoppe

お礼率 66% (22/33)

ごめんなさい。そのとおりです。。楕円体の体積のことでした。^^;
投稿日時 - 2002-02-26 14:04:17


  • 回答No.2
レベル14

ベストアンサー率 21% (516/2403)

前に同じような質問がありました。 いかがでしょうか。 ...続きを読む
前に同じような質問がありました。
いかがでしょうか。
お礼コメント
hoppe

お礼率 66% (22/33)

ありがとうございました。^^
投稿日時 - 2002-02-26 14:05:50
  • 回答No.3

機械工学ハンドブックとか 配管ハンドブックとか 工業関係の便覧・ハンドブックをみると.面積や回転体の体積が乗っていますので.本を探してみてはいかがでしょうか。 「楕円の体積」を楕円の回転体の体積と取って良いのか.それとも.それ以外の解釈が取れるのか.わかりませんので。 ...続きを読む
機械工学ハンドブックとか
配管ハンドブックとか
工業関係の便覧・ハンドブックをみると.面積や回転体の体積が乗っていますので.本を探してみてはいかがでしょうか。
「楕円の体積」を楕円の回転体の体積と取って良いのか.それとも.それ以外の解釈が取れるのか.わかりませんので。
お礼コメント
hoppe

お礼率 66% (22/33)

ありがとうございました。^^
投稿日時 - 2002-02-26 14:05:21
  • 回答No.5
レベル10

ベストアンサー率 49% (97/197)

旋転楕円体の体積(V)の求め方公式  長径(D)を軸とする、旋転長楕円体(ラグビーボール様)の場合   長径(D)、短径(d)が既知の場合 V=π(ぱい)×d×d×D/6=0.5236ddD   長半径(R)、短半径(r)が既知の場合 V=4×π×r×r×R/3=4.1888rrR  短径(d)を軸とする、旋転短楕円体の場合   D,dが既知の場合 V=πdDD/6=0.5236dDD   R ...続きを読む
旋転楕円体の体積(V)の求め方公式
 長径(D)を軸とする、旋転長楕円体(ラグビーボール様)の場合
  長径(D)、短径(d)が既知の場合 V=π(ぱい)×d×d×D/6=0.5236ddD
  長半径(R)、短半径(r)が既知の場合 V=4×π×r×r×R/3=4.1888rrR
 短径(d)を軸とする、旋転短楕円体の場合
  D,dが既知の場合 V=πdDD/6=0.5236dDD
  R,rが既知の場合 V=4πrRR/3=4.1888rRR
  側面よりみても平面よりみてもいずれも楕円をなすものの場合
   V=πDdd'/6
  
お礼コメント
hoppe

お礼率 66% (22/33)

とても詳しい回答、ありがとうございました。具体的な数値まで書いてくださって、わかりやすかったです。^^
投稿日時 - 2002-02-27 12:47:05
このQ&Aで解決しましたか?
関連するQ&A
-PR-
-PR-
このQ&Aにこう思った!同じようなことあった!感想や体験を書こう
このQ&Aにはまだコメントがありません。
あなたの思ったこと、知っていることをここにコメントしてみましょう。

その他の関連するQ&A、テーマをキーワードで探す

キーワードでQ&A、テーマを検索する
-PR-
-PR-
-PR-

特集


いま みんなが気になるQ&A

関連するQ&A

-PR-

ピックアップ

-PR-
ページ先頭へ