• ベストアンサー

dxdyの求め方

dx=rsinθ,dy=rcosθの時のdxdyはどのように求めればよいのでしょう? 答えにはrdrdθとあるのですが、分かりません。 dx=sinθdr-rcosθdθ dy=cosθdr+rsinθdθ なら分かるのですが・・・・

質問者が選んだベストアンサー

  • ベストアンサー
  • take008
  • ベストアンサー率46% (58/126)
回答No.2

二重積分は ∫∫D f(x,y) dxdy と(慣習で)書きますが ∬D f(x,y) ∂(x,y) と書いた方が本質を表しています。 すなわち,∬ は二重積分というひとつの記号で,∫を2つではないし, ∂(x,y) は x,y 別々ではなく,D内の点(x,y)を考えています。 もっとも,∂(x,y)はx,yを微小変化させた時の面積の変化を意味するので,dx×dy なんですけど。 ∂(x,y)を∂(r,θ)で表すと考えれば,No1 さんの説明に納得がいくと思います。 |a b| |c d| (行列式)が平行四辺形(0,0)-(a,c)-(a+b,c+d)-(b,d)の符号付面積であることを思い出してください。

その他の回答 (2)

  • uyama33
  • ベストアンサー率30% (137/450)
回答No.3

dx^dy=(sinθdr-rcosθdθ)^(cosθdr+rsinθdθ) =(sinθcosθ)dr^dr+(sinθrsinθ)dr^dθ -(rcosθcosθ)dθdr-(rcosθrsinθ)dθ^dθ =(sinθrsinθ)dr^dθ-(rcosθcosθ)dθ^dr =(sinθrsinθ)dr^dθ+(rcosθcosθ)dr^dθ =rdr^dθ のように計算します。 微分形式とか多変数解析学 の本を読んでください。

  • adinat
  • ベストアンサー率64% (269/414)
回答No.1

合成関数の微分法だから、これは覚えていないといけない。 たとえばxが1変数rだけの関数なら、dx=(dx/dr)drとするのが高校生以来の置換積分の公式だった。2変数なら dxdy=|∂(x,y)/∂(r,θ)|drdθ です。ほとんどまったく同じ形をしているので、だから覚えやすいのです。 絶対値の中身、∂(x,y)/∂(r,θ)はヤコビアンで、拡大(縮小)率を見ています。これは行列式であって、{{x_r,y_r},{x_θ,y_θ}}という行列の行列式のことです。x_rとかはxのrに関する偏微分などです。行列をテキスト表記するのは面倒なので、上の書き方は適当に解釈してください。 ちなみに1次元の場合は絶対値がつかないのに、2次元(以上)で絶対値がつくのは面積を計算する領域の向きの変換を考えないことに依存しています。たとえば1次元の場合は、x:α→βと積分するとき、-x→yと変数変換すればy:-α→-βと積分することになりますが、多変数のときは、これを-β→-αという感じで計算していることになるので、したがって符号を元に戻す必要があって、絶対値がついているというイメージです。詳しいことはもちろん微積のテキストのご参照を。webにもたくさん落ちてることでしょう。

関連するQ&A

  • r^2(θ)=cos2θ (-π/4≦θ≦π/4、r≧0)についての問題

    検索をさせていただいたのですが、なかなか 似たような問題が出てこなかったので質問させていただきます。 大学院の問題なのですが、いまいちわかりません…。 r^2(θ)=cos2θ (-π/4≦θ≦π/4、r≧0) (1)dr/dθを求めよ。 自分なりに出した答えが r(θ) = √cos2θ (∵ r≧0) dr/dθ = 1/2 x 2 x (-sin2θ)^(-1/2)     = -1/√sin2θ     = - √sin2θ/sin2θ  ←有利化 (2)dr/dθ = 0となるθの値と、それに対応するr(θ)を求めよ。 dr/dθ = 0となるのはθ = 0のときで r(0) = √cos0 = 1 (3)直行座標(x,y)で表したときに、dy/dx = 0となるθの値と、それに対応するr(θ)を求めよ。 x = rcosθ、y = rsinθ とおき、 dx/dθ = -rsinθ dy/dθ = rcosθ よって dy/dx = -cosθ/sinθ = -1/tanθ と、ここでつまってしまいました。。。 (1)、(2)も自信がありません…。 どなたかわかる人がいましたら、 ご教授いただけると非情に助かります。 よろしく御願いします。

  • 陰関数そのものを使った積分の計算法

    いろいろな曲線の表示において、微分や積分の計算法を整理してみました。 x^2+y^2=4上の点(x,y)=(1,√3)でのdy/dxの値の求め方。 陽関数。y=√(4-x^2)よりdy/dx=-x/√(4-x^2)。x=1のとき、dy/dx=-1/√3。 媒介変数。x=2cos(θ),y=2sin(θ)とすると、dy/dx=dy/dθ÷dx/dθ=-cos(θ)/sin(θ)。 θ=π/3のとき、dy/dx=-1/√3。 逆関数。x=√(4-y^2)よりdy/dx=1÷dx/dy=-√(4-y^2)/y。y=√3のとき、dy/dx=-1/√3。 極座標に変数変換。(x,y)→(r,θ) (ただし、x=rcos(θ),y=rsin(θ))とすると、(1,√3)→(2,π/3)。 x^2+y^2=4→r=2。dx=cos(θ)dr-rsin(θ)dθ、dy=sin(θ)dr+rcos(θ)dθ。dr/dθ=0。 よって、dy/dx=-cos(θ)/sin(θ)。θ=π/3のとき、dy/dx=-1/√3。 陰関数。2x+2y(dy/dx)=0より、dy/dx=-x/y=1/√3。 y≧0,x^2+y^2≦4の面積の求め方。 陽関数。境界はy=√(4-x^2)より∫[-2,2]ydx=∫[-2,2]√(4-x^2)dx=[(1/2)√(4-x^2)+2arcsin(x/2)] [-2,2] = 2π 媒介変数。境界をx=2cos(θ),y=2sin(θ)とすると、∫[-2,2]ydx=∫[π,0]2sin(θ){-2sin(θ)}dθ = 2π 逆関数。境界はx=√(4-y^2)より∫[-2,2]ydx=2∫[0,1]y(dx/dy)dy=2∫[2,0]y(-y/√(4-y^2))dy=2π 極座標に変数変換。(x,y)→(r,θ)(ただし、x=rcos(θ),y=rsin(θ))とすると、 [y≧0,x^2+y^2≦4]→[0≦r≦1,0≦θ≦π]、ヤコビアンはr。よって、 ∫[y≧0,x^2+y^2≦4]dxdy=∫[0≦r≦2,0≦θ≦π]rdrdθ=2π 以上のように計算法を比べてみると、陰関数そのものを使った積分の計算法を僕は知りません。 数学の理論はボタンをかけるように、パラレルな理論があると信じているのですが、 一方を知らないので気になります。 陰関数そのものを使った積分の計算法があれば教えていただけますようお願いいたします。

  • 重積分の問題なのですが・・・。

    重積分の問題なのですが・・・。 ∬(y-6)(x^2+y^2)^(1/2)dxdy 積分区間はx^2+y^2<=4です。 x=rcosθ, y=rsinθとおいて、積分区間の条件より 0<=r<=2, 0<=θ<=2πとおける さらにこのときdxdy=rdrdθとなる 与式=∫[o<-2π]∫[0<-2]{rsinθ-6)(r^2cos^2θ+r^2sin^2θ)^(1/2)}rdrdθ   =∬{(rsinθ-6)r^2}drdθ   =∫[1/4sinθr^4-2r^3](0<-2)dθ   =∫(4sinθ-16)dθ   =[-4cosθ-16θ](0<-2π)   =(-4-32π)-(-4)   =-32π とマイナスになってしまいました、どこが間違えているのでしょうか? すみませんがよろしくお願いします。

  • 二つのΓ関数Γ(p)、Γ(q)の積について

    Γ(p)Γ(q)=4∫[0→∞]∫[0→∞]e^(-x^2-y^2)・x^(2p-1)y^(2q-1)dxdy において、 x=rcosθ, y=rsinθ と置いて直交座標(x,y)から極座標(r,θ)に移れば、 Γ(p)Γ(q)=4∫[0→∞]∫[0→Π/2]e^(-r^2)・r^(2p+2q-2)cos^(2p-1)θ・sin^(2q-1)θ・rdθdr となるのですが、 rdθdrの導き方が分かりません。 dx=drcosθ-rsinθdθ, dy=drsinθ+rcosθdθ を用いてみるのですが上手く行きません。 rdθdrの導出方法を詳しく教えて頂けないでしょうか。

  • 3重積分について

    ∫(D) |x| + |y| + |z| (dx)^3 領域D:{x^2 + y^2 + z^2≦a^2, a>0}という問題で、解が(3πa^4)/2になるはずなのですが、極座標に変換する段階でいまいち分かりません。自分なりにやると、 x=rsinθcosφ, y=rsinθsinφ, z=rcosθ (0≦r≦a, 0≦θ≦π, 0≦φ≦2π)として、ヤコビアンがr^2 sinθになり、 ∫(D) |x| + |y| + |z| (dx)^3 =∫[0→2π]dφ∫[0→π]dθ∫[0→a]dr (r^2 sinθ)(rsinθcosφ+rsinθsinφ+rcosθ) このようになるのですが、自分がこれを解いていくと違った解になり、正解にたどり着きません。この変換が間違っているのでしょうか?単に途中の計算が間違っているのでしょうか? よろしくおねがいします。

  • dθ/dxの求め方について

    x=rcosθ y=rsinθ とします (1)dθ/dx=1/(dx/dθ)=-1/rsinθ (2)y/x=tanθより (-y/x^2)*dx=(1/(cosθ)^2)*dθより dθ/dx=(-y/x^2)*(cosθ)^2 =((-rsinθ)/(r^2(cosθ)^2))*(cosθ)^2 =-sinθ/r というように結果が違ってしまいます… これはなぜでしょうか…

  • 積分の変数変換について

     積分の変数変換に関する質問です。一番簡単な直交座標から極座標への変換を例にします。   x = x(r,θ) = rcosθ.   y = y(r,θ) = rsinθ. であるとき f(x,y) = 1 を x^2 + y^2 ≦ R^2 という円内を積分領域して積分すれば   ∫∫f(x,y)dxdy = ∫∫dxdy = ∫∫rdrdθ ・・・・・・ (#) となり円の面積が求められます。つまり直交座標から極座標に変換して積分するときは   dxdy →drdθ ではなく、   dxdy →rdrdθ としなければならないと、どんな参考書にも書いてあります。つまり r を余分に付け加えるわけですが、これは   ┌ ┐ ┌       ┐┌  ┐   |dx|=|cosθ -rsinθ||dr |   |dy| |sinθ  rcosθ||dθ|   └ ┘ └       ┘└  ┘   |J| =|cosθ -rsinθ|= rcos^2θ- (-rsin^2θ) = r      |sinθ  rcosθ| のように行列式|J|でも求めることができ、|J|をヤコビアンと呼ぶということも参考書に載っています。  一方で   rdrdθ= rdθ*dr は極座標における面積要素ですから(#)の変換は直感的にも納得できます。θは角度ですから drdθでは面積になれないわけです。(#)は具体的には   ∫[0~2π]∫[0~R]rdrdθ で計算できます。この式だけじーっと見ていると、いつのまにか r とθが極座標の変数であることが忘れ(笑)、あたかもθを縦軸、r を横軸とする '直交座標' において関数 θ= r を積分していると見なせます。  で、ここからが質問なのですが・・・  直交座標から任意の座標に変数変換して積分するということは、結局のところ、その任意の座標を直交座標と見なして計算することであると考えてよいのでしょうか?  たとえば   x = x(u,v,w)   y = y(u,v,w)   z = z(u,v,w)   ┌  ┐  ┌        ┐┌ ┐   |dx| |∂x/∂u ∂x/∂v ∂x/∂w ||du|   |dy|=|∂y/∂u ∂y/∂v ∂x/∂w||dv|   |dz| |∂z/∂u ∂z/∂v ∂z/∂w||dw|   └ ┘  └         ┘└ ┘     |∂x/∂u ∂x/∂v ∂x/∂w|   |J| =|∂y/∂u ∂y/∂v ∂x/∂w|     |∂z/∂u ∂z/∂v ∂z/∂w| であるとき   dxdydz = |J|dudvdw という変数変換は、 u、v、w がどんな座標の変数であれ、最終的には u、v、w の '直交座標' で計算することであると考えてよいのかということです。  任意の座標同士の変数変換というのはどうなるのでしょうね。ちょっと想像しかねます。

  • 広義積分

    広義積分の問題なのですが,変数変換をすると,積分範囲がどうしても0→0になってしまいます…。 問題は D={(x,y)∈R^2|ε^2≦x^2+y^2≦1} lim(ε→0) ∬{(x^2-y^2)/(x^4+y^4})dxdy という問題なのですが,これを x=rcosθ,y=rsinθ,ヤコビアン=r D'={(r,θ)∈R^2|ε≦r≦1,0≦θ≦2π} ∫(1/r)dr∫{(cos^2θ-sin^2θ)/(cos^4θ+sin^4θ)}dθ =∫(1/r)dr∫{cos2θ/((cos^2θ+sin^2θ)^2-2cos^2θsin^2θ)}dθ =∫(1/r)dr∫{cos2θ/(1-(sin2θ)^2/2)}dθ =∫(1/r)dr∫{2cos2θ/(2-(sin2θ)^2)}dθ ここでt=sin2θと変数変換しようとしたのですが, そうすると積分範囲が0→0になってしまします。。。 どこか間違っているのでしょうか?? どなたか解説お願いします。

  • 2重積分

    ∬xdx(範囲は、x^2+y^2≦2yかつy≦x)を計算せよ x=rcosθ、y=rsinθとおいて 範囲は0≦r≦cosθ,0≦θ≦π/4 =∬rcosθ*rdrdθ =(∫「0→cosθ」r^2dr)(∫「0→π/4」cosθdθ) =1/3[r^3]「0→cosθ」*[sinθ]「0→π/4」 ここで行き詰まりその後どうして良いか分かりません アドバイスお願いします。

  • ヤコビアンについて質問です。

    x=2rcosθ、y=3rsinθとしたとき、 なぜdxdy=6rdrdθとなるのですか? 計算過程を教えてください。