• ベストアンサー

教えて下さい。

stomachmanの回答

  • stomachman
  • ベストアンサー率57% (1014/1775)
回答No.11

mocchan1515さんが混乱しないように、注釈します。 teizo-さんは積分を使って証明してますが、もちろんオッケーです。ちなみに b=a^(p-1)とすると p-1=p/q より b=a^(p/q) つまり b^q = (a^(p/q))^q)=a^p だから、等号が成り立つ条件 a^p=b^q は b=a^(p-1) と全く同じ意味です。 なお、論理式の記号に付いては↓が参考になると思います。

参考URL:
http://oshiete1.goo.ne.jp/kotaeru.php3?q=143938

関連するQ&A

  • ヤングの不等式の等号成立について

    ヤングの不等式ab≦(a^p)/p+(b^q)/qで 等号成立がa^p=b^q とあるのですが、これの証明ってどうやるのでしょうか? どの本を見ても「明らか」としか書いてないので・・・

  • 集合の証明

    P∪(Q∩R)=(P∪Q)∩R P⊂Rが成り立つとし、また集合Qは任意の集合とする。 この時この上記の等号関係を証明しなさい。 という問題なんですけど、教えていただけないでしょうか?

  • 不等式の証明(絶対値)

    次の不等式を証明せよ。また、等号が成り立つのはどのようなときか。 ・|a+b|≦|a|+|b|…(1) という問題で、(1)が成り立つのは分かりました。 等号が成立するとき|ab|=abとなるのも理解できるのですが、 そこからなぜab≧0にもっていけるのかが分かりません。 回答おねがいします。

  • 逆数の和の不等式の証明

    a, b, c を正数とするとき、以下の不等式を証明せよ。 (1):(a / b) + (b / a) ≧ 2 (2):(a / b) + (b / c) + (c / a) ≧ 3 (1)は (a^2 + b^2) / ab ≧ 2 (a^2 + b^2) ≧ 2ab a^2 + b^2 - 2ab ≧ 0 (a - b)^2 ≧ 0 となるので、比較的簡単に証明できました。 (2)も似たような考え方なのだろうと思ったのですがてこずってしまいました。 実はこれ、「数学記号を読む辞典」という書籍のP46の問題なのですが、「ぜひ証明に挑戦してみてください」で終わっており、答えがありませんでした。 お分かりになる方、解き方を教えてください。 よろしくお願いします。

  • 不等式の証明と命題の真偽(基本的)

    お世話になっております。 実数a、b、cに対して、 等式 |a|+|b|+|c|=|a+b+c|…P が成立つことは、ab+bc+ca≧0 …Q が成立つための○○条件である。(○の数は特に意味なし) という問題です。証明も合わせて(不等式を証明して、等号成立条件を調べてから命題を考えてみたかった為)以下のように考えてみました。 まず証明。 与えられた等式を考える前に、不等式 |a|+|b|+|c|≧|a+b+c|…(2)を証明する。 (2)の両辺は正または0であるから、両辺の二乗の差を考えて (|a|+|b|+|c|)^2-|a+b+c|^2 =2{|ab|+|bc|+|ca|-(ab+bc+ca)} =2{(|ab|-ab)+(|bc|-bc)+(|ca|-ca)}…(3) ここで、|ab|≧ab,|bc|≧bc,|ca|≧ca だから、(3)≧0。従って不等式(2)は成立つ。等号成立は、ab≧0,bc≧0,ca≧0…(4) より、ab+bc+ca≧0 の時に限る。 よって、等式Pが成立つとき、a,b,cはQを満たす。(ここが一番曖昧です) 逆にQが成立つとき、(4)が成立つから、積の場合分けで導かれる二つの場合で、 a≧0かつb≧0かつc≧0 のときは、Pは成立つ。 a≦0かつb≦0かつc≦0 のときはPは、 左辺=-a-b-c=-(a+b+c)=右辺 より成立つ。 以上より、○○は必要十分条件が適当と思す。 以上、拙いですが頭捻ってみました。当方が微妙だと感じるのは、不等式の証明についての説明部分(解答ではb+cを一括りにしてaと(b+c)の二変数と考えて、二変数については不等式が成立つことを利用して証明してました)と、既に書いた通り、条件Pが十分条件であることの説明部分(こちらは解答なし)です。 長ったらしい文で恐縮ですが、閲覧ついでにご回答いただけると嬉しいです。宜しくどーぞ。

  • ε-δ論法のことで

    大学の教養でε-δ論法を学んでいるのですが、そのことについて質問です。 講義では、 (1)任意の正数εに対して、0≦x<εならばx=0 と教わり、極限点の一意性を、 2つの極限点pとqの距離が任意のε>0より小さくなることを証明して、p=q と証明したりしています。 しかし、(x,y)→(a,b)とするときの関数f(x,y)の極限がcであることの定義 「任意の正数εに対し、ある正数δが存在して(x,y)と(a,b)の距離がδより小さいならば f(x,y)-cの絶対値がεより小さくなる」 において、(1)を用いて「~ならばf(x,y)-c=0となる」と書かない(書けない?)のはなぜでしょうか? 今までの講義では、定数同士の距離に対しては(1)が適用できて、nや(x,y)による数字が入っているものだと使っていないみたいなのですが、そうなのだとしてもなぜ後者では(1)を使わないのかがわかりません……

  • |a|-|b|≦|a-b| 等号成立

    |a|-|b|≦|a-b| の証明は (1)|a|-|b|<0のとき (2)|a|-|b|≧0のとき の2つの場合分けで解いて証明する、ということは分かりました。 ですが、等号成立が分かりません。 (2)の方は、(2)の両辺2乗して整理すると2(|ab|-ab)>0となるので、等号成立は|ab|-ab=0 つまりab≧0のとき、だと思うのですが、(1)の方の等号成立が分かりません。 絶対値の証明がかなり苦手なので、詳しく解説していただけるとありがたいです。

  • 等式・不等式の証明

    a>0,b>0のとき、次の不等式を証明せよ。 また、等号が成り立つ場合を調べよ。 〔解〕 (a + 1/b)(b + 1/a)≧4 (a + 1/b)(b + 1/a)=2+ab+(1/ab) a>0,b>0 より ab>0,1/ab>0 よって 2+ab+(1/ab)≧2+2√ab×1/ab       =2+2       =4 ゆえに(a + 1/b)(b + 1/a)≧4 等号が成り立つのは、ab=1/ab より ab=1 のとき 上に問題と模範解答を写したのですが、 「等号が成り立つのは、ab=1/ab より ab=1 のとき」の部分がわかりません。 ab=1/ab はどこから出てきたのですか?

  • 相加平均、相乗平均を使う問題。。

    両端が放物線y=x^2の上にある線分ABの中点をPとする。 点A、Bのx座標をそれぞれ、a,bとし、Pの座標を(p,q)とする。 (1)~(3)は問題のみ書きます。 (1)pおよびqを、aとbを用いて表せ。 (2)積abを、pとqを用いて表せ。 (3)線分ABの長さが4であるときqをpの式で表せ (4)線分ABが長さを4に保って動くとき、qの最小値と、そのときのpの値を求めよ。 という相加平均・相乗平均の関係を使って答えを出す 問題なんですが、どうして、この関係を使って解くか いまいちわかりません。教えてください!! (4)のことです。 ちなみに答えは、 p^2+1/4>0であるから、相加・相乗平均の関係を用いて、 q=1/(p^2+1/4) +p^2+1/4-1/4 ≧2-1/4 =7/4 等号成立は、p^2+1/4=1つまりp=±√3/2のときである。 したがって、qの最小値は 7/4(p=±√3/2のとき) です。よろしくお願いします。

  • 数学でわからない問題があります

    不等式a2+9b2≫4abを証明して等号が成り立つときを調べる問題なんですが なぜ(a-2b)2+5b2≫0になってa2+9b2≫4abになったり 等号が成り立つのはa=b=0のときなのかが わかりません。答えや例題をみてもさっぱりで 夏休み中なので誰にも聞けずに困っています。 数学苦手な私でもわかるように説明していただけたらうれしいです!