OKWAVEのAI「あい」が美容・健康の悩みに最適な回答をご提案!
-PR-
解決
済み

広義積分の問題です

  • すぐに回答を!
  • 質問No.215837
  • 閲覧数96
  • ありがとう数3
  • 気になる数0
  • 回答数2
  • コメント数0

お礼率 32% (120/368)

∫1/(x^3+1)dxの広義積分が収束することを示し値を求めてください。
解答の際にはなぜ収束するかも書いてくれるとありがたいです。御願いします
通報する
  • 回答数2
  • 気になる
    質問をブックマークします。
    マイページでまとめて確認できます。

質問者が選んだベストアンサー

  • 回答No.2

積分範囲を0から∞だということにします。

答えは
(2*Pi)/(3*Sqrt[3])
ただし Sqrtは√、Piはπ

計算の為のヒント

分母を
(1 + x)*(1 - x + x^2)
と因数分解できることに注意

収束性の判定
∫1/(x^3+1)dx1/(x^3+1)
は、0から1までは積分可能である。
1から∞までは
|1/(x^3+1)|<= 1/x^3
であり、1/x^3 が1から∞まで積分可能であることから、
1/(x^3+1)は広義積分可能です。
-PR-
-PR-

その他の回答 (全1件)

  • 回答No.1
レベル13

ベストアンサー率 64% (700/1089)

え~と,積分範囲は? それから,広義積分の問題を次々質問されていますが, 問題を全部質問しているときりがありません. 前の質問 http://oshiete1.goo.ne.jp/kotaeru.php3?q=215247 の hanger さんの回答など指針になるはずですが (√の中が負になるところをちょっとうっかりされたようですけれど), 試して見られたのでしょうか. 回答に対する ...続きを読む
え~と,積分範囲は?

それから,広義積分の問題を次々質問されていますが,
問題を全部質問しているときりがありません.
前の質問
http://oshiete1.goo.ne.jp/kotaeru.php3?q=215247
の hanger さんの回答など指針になるはずですが
(√の中が負になるところをちょっとうっかりされたようですけれど),
試して見られたのでしょうか.
回答に対するレスポンスがないと,読まれているのかどうか回答者にはわかりません.


このQ&Aで解決しましたか?
関連するQ&A
-PR-
-PR-
このQ&Aにこう思った!同じようなことあった!感想や体験を書こう
このQ&Aにはまだコメントがありません。
あなたの思ったこと、知っていることをここにコメントしてみましょう。

その他の関連するQ&A、テーマをキーワードで探す

キーワードでQ&A、テーマを検索する
-PR-
-PR-
-PR-

特集


いま みんなが気になるQ&A

関連するQ&A

-PR-

ピックアップ

-PR-
ページ先頭へ