OKWAVEのAI「あい」が美容・健康の悩みに最適な回答をご提案!
-PR-
解決
済み

どうすればいいのか分かりません

  • すぐに回答を!
  • 質問No.211735
  • 閲覧数55
  • ありがとう数1
  • 気になる数0
  • 回答数2
  • コメント数0

お礼率 67% (19/28)

実数 x,y について I=∫(0~2π) (x cosθ+ y sinθ-θ)^2 dθ とするとき、Iを最小にするx,yの値とそのときのIの値を求めよ という問題があるのですが、どうすれば良いか分かりません。一応(x cosθ+ y sinθ-θ)^2を展開してx^2 (cosθ)^2+y^2(sinθ)^2+2xycosθsinθ-2θxcosθ-2θysinθ+θ^2 にしてθで積分してみようと思ったのですが、∫(0~2π)(cosθ)^2 dθができません(問題に関係あるのか分かりませんが).
最小値なので微分して0になる点を見つけるような気がするんですが…
通報する
  • 回答数2
  • 気になる
    質問をブックマークします。
    マイページでまとめて確認できます。

質問者が選んだベストアンサー

  • 回答No.2
レベル8

ベストアンサー率 41% (13/31)

計算すると
I=πx^2+πy^2+4πy+(8/3)π^3
となり
I=πx^2+π(y+2)^2+(8/3)π^3-4π
と変形し、x、yが実数であることにより
 最小値は x=0 , y=-2 のとき
 (8/3)π^3-4π となります。
計算は、自信がありませんが
考え方は、こうだと思います。
お礼コメント
j_takoyaking-man

お礼率 67% (19/28)

どうもありがとうございました。
投稿日時 - 2002-02-06 22:03:08
-PR-
-PR-

その他の回答 (全1件)

  • 回答No.1
レベル8

ベストアンサー率 41% (13/31)

倍角・半角の公式を用いて  (cosθ)^2=(1+cos2θ)/2 (sinθ)^2=(1-cos2θ)/2 2sinθcosθ=sin2θ とし、積分をすれば答えが見えてきますね。 あとは、xyに関しての二次式です。 ...続きを読む
倍角・半角の公式を用いて
 (cosθ)^2=(1+cos2θ)/2
(sinθ)^2=(1-cos2θ)/2
2sinθcosθ=sin2θ
とし、積分をすれば答えが見えてきますね。
あとは、xyに関しての二次式です。
補足コメント
j_takoyaking-man

お礼率 67% (19/28)

ありがとうございます。
積分してみると、
I=(x^2/2)∫(0~2π)1+cos2θdθ+(y^2/2)∫(0~2π)1-cos2θdθ+xy∫(0~2π)sin2θdθ-x∫(0~2π)θcosθdθ-y∫(0~2π)θsinθdθ+∫θ^2dθ
=(x^2/2)[θ](0~2π)+(x^2/2)[(1/2)sin2θ](0~2π)+(y^2/2)[θ](0~2π)-(y^2/2)[(1/2)sin2θ](0~2π)+xy[(-1/2)cos2θ](0~2π)-x[θsinθ](0~2π)+x∫(0~2π)sinθdθ+y[θcosθ](0~2π)-∫(0~2π)cosθdθ+[(1/3)θ^3](0~2π)
=π x^2+π y^2+2πy+(8 π^3)/3
となりましたが、変数がx,y2つあるのでこの後どうすれば良いか分かりません。
また答えにはx=0,y=-2のときI=(8/3)π^3-4πとなっているのですが、上の式に代入してみても合いません。計算ももう一度してみましたが間違いはみつかりません。どうすれば良いでしょうか?どなたか教えて下さい。
投稿日時 - 2002-02-05 21:35:02


このQ&Aで解決しましたか?
関連するQ&A
-PR-
-PR-
このQ&Aにこう思った!同じようなことあった!感想や体験を書こう
このQ&Aにはまだコメントがありません。
あなたの思ったこと、知っていることをここにコメントしてみましょう。

その他の関連するQ&A、テーマをキーワードで探す

キーワードでQ&A、テーマを検索する
-PR-
-PR-
-PR-

特集


いま みんなが気になるQ&A

関連するQ&A

-PR-

ピックアップ

-PR-
ページ先頭へ