• 締切済み

代数方程式について

5次以上の代数方程式に解は存在しませんが 存在しないという事を証明するのは実際に解を 求めるという事に比べどういう点に困難があるのかが 分からなくて困っています(--: 是非教えて頂きたいのでどうぞよろしく お願いしますm(_ _)m

みんなの回答

回答No.1

お答えではありませんが、、 解が存在しないのではなく、冪根と四則演算だけから成る一般解の公式が存在しないのだと思います。(つっこみみたいで恐縮です)

nikunsai
質問者

お礼

アドバイスありがとうございます 確かに解が存在しないのではなくて、一般解の公式が ないのですね(^^ また質問を書き直してもう一度質問します

関連するQ&A

  • 代数方程式について2

    5次以上の代数方程式には一般解の公式は存在しませんが存在しないという事を証明するのは実際に解を求めるという事に比べどういう点が困難があると思われますか どうしても分からなくて困っているので 皆様のお力を貸してください。 よろしくお願いしますm(_ _)m

  • 代数方程式

    5次以上の代数方程式を代数的に解けないことの証明ってどうやるんですか?

  • 変数係数の代数方程式

    簡単のため、2次での例をあげます。 x^2+a(z)x+b(z)=0 というxについての2次方程式を考えます。これはzを止めるごとに二つの複素数解を持ちます。もしa(z)とb(z)が連続であれば、zに関してそれらの二つの解は連続になります。もしa(z)とb(z)がともに正則関数なら、二つの解は判別式が0となる点を除いてzの正則関数になります。それらのことは、解の公式をみればただちにわかります。判別式が0になる点は代数的特異点になる可能性があり、周期2である可能性があります。この事実も解の公式をみればすぐにわかります。 これを一般化して、最高次の係数が1で、係数がzの関数になっているようなn次方程式を考えます。n個の解はそれぞれzの関数と考えることができますが、有限個の例外点をのぞけば、係数の連続性が解の連続性にそのまま遺伝すると考えられます。たとえば係数が連続なら、解も連続だし、係数がzに関して正則なら、解も有限個の点をのぞいて正則になるものと思われます。ただ、一般の場合は代数的な解の公式がありません。どうやってこの事実を証明したらよいでしょうか。ヒントでもよいのでご教示いただけたらと思います。おそらく複素解析を使うのがもっとも簡単だとは思うのですが。参考文献をあげていただけるだけでも構わないです。

  • 複素平面で代数方程式の解を含む最小凸多角形

    ガウスの定理 ガウス平面(複素平面)において、代数方程式f(x)=0のすべての解を表す点を含む最小凸多角形は、 f’(x)=0のすべての解を表す点を含む。 この定理の証明(サイト紹介でもいいです)とか、感覚的な理解とかがありましたらどうか教えてください。

  • 代数の体論の計算問題について教えてください。

    ご教授、宜しくお願いします。 問い 次の数は、有理数体Q上で、代数的であることを証明せよ。 (1)√3+³√2 (2)√2+√3+√5 解答 (1)√3+³√2は、x^6-9x^2-4x^2+27x^2-36x-23 の解である。 (2)√2+√3+√5 は、x^8-40X^6+352X^4-960X^2+576 の解である。 ある値aが解となるような方程式を見つけることが、代数的証明ぼ方針であることは、わかりましたが、(1)と(2)の値が、上記の方程式を満たすことがわかるためには、どのように解けばよいのでしょうか。宜しくお願いします。

  • 5次以上の方程式が代数的に解けないことについて

    ガロア理論について質問です. 以前, http://oshiete1.goo.ne.jp/qa5614447.html こちらで質問させていただきました. そこで,ガロアは「5次以上の方程式が代数的に解けない」という結果を得るために群というものを用いて研究を進めたとの意見をいただきました. それは理解できたのですが,「5次以上の方程式が代数的に解けない」という事実は,どのような実用性があるのでしょうか? ガロアやそれ以前の人たちが考えた代数学というものは,現在数学やその他の分野で大変重要な役割を果たしていることは分かるのですが,「5次以上の方程式が代数的に解けない」という結果がどのような恩恵を与えてくれるのかがよく分かりません. 「現在このよな分野で役立っている」というような具体例があれば教えていただけますか? ちまみに私は現在,ガロア理論というものを基盤として,主に群や体,環などについて学習しています. まだ,「代数的に解けない」という導くとこまでは到達できていないのですが,その結果がどのような役に立っているのかが知りたいです. よろしくお願いします.

  • 代数的数の分類

    整数は0次の整数係数方程式の解と思うことができます 有理数は0 or 1次の整数係数方程式の解と思うことができます 代数的数は有限次の整数係数方程式の解と思うことができます この間に2,3,・・・次の整数係数方程式の解についての代数的位置付けはどのような形で示されているのでしょうか あまり、議論するようなことでもないのでしょうか?

  • 連立方程式 未知数より方程式の数が多いとき

    線形代数での連立方程式についてです。 今現在線形代数を勉強しているのですが、未知数より方程式の数が多いときはどうなるのでしょうか? 解は一つに定まるか不定になる思うのでしょうか。。。。 なぜなら Guass elimination で計算すると、たとえば (1) (2) 1 2 | 3 1 2 | 3 0 1 | 2 0 1 | 2 0 0 | 0 0 0 | 2 (1)のような場合だと解が一つに定まり、(2)なら不定だになると思うからです。 しかし、ネットで検索すると以下のサイトで、”方程式の個数が未知数の個数よりも多い連立1次方程式は,一般には解が存在しない.”とありました。 http://www.geisya.or.jp/~mwm48961/linear_algebra/simul_eq1.htm なぜでしょうか?

  • 代数方程式をΣax=0と表現する理由

    数学において代数方程式は、よく、 Σax=0 の形で表されているようです。 これは、多項式の零点を用いた記述、との説明をある本でみた記憶があります。 そこで以下質問です。 (1)零点を用いる理由は何なのでしょうか。どのような有用性があるのでしょうか。  Σの右辺が0とすることがそのまま零点という概念を用いると理解してますが正しいでしょうか。 (2)Σax=1 のように、右辺を1にして記述する方法は存在しますでしょうか。  もしあれば、呼び名、有用性について教えてください。 以上

  • 線形代数の問題でこの一次方程式を掃きだし法で解き、一般解を求めるやり方

    線形代数の問題でこの一次方程式を掃きだし法で解き、一般解を求めるやり方と答えを教えて下さい