• ベストアンサー

記憶項を伴う波動方程式とは ?

chukanshiの回答

  • chukanshi
  • ベストアンサー率43% (186/425)
回答No.4

まだ、締め切りではない様なので、 記憶効果や記憶項に関する 記述がある教科書を、ご紹介します。 非平衡系の統計力学 物理学教科書シリーズ 藤坂 博一 著 (1998/01/01) 産業図書

memoryterm
質問者

お礼

chukanshi さん, ご回答頂きありがとうございました. ご紹介の文献はすべて取り寄せて調べてみることにします. とりあえず弦の振動についてだけわかればと思っていたのですが, 意外に日本語の文献はないようですね. お礼の返事が遅くなりまして申し訳ありませんでした.

関連するQ&A

  • 弦を伝わる横波の波動方程式

    (1)x~x+Δxにある線密度σの弦の一部分の運を考察する。y方向の変位をy(x,t)とし、弦の張力をTとすると、弦の一部分に働く力のy成分がT∂^2y/∂x^2・Δxと書けることを示せ。 (2)弦の一部分の振動を表す運動方程式を求め、それが波動方程式になることを示せ。 (3)弦を伝わる横波の伝播速度を決定する物理量は何か。 (4)ギターの弦が細いとき、音が高くなる理由を考えよ。 テスト前なのに分からないので教えていただきたいです。 お願いします。

  • 無限領域での波動方程式の計算に出てくる偏微分方程式

    波動方程式の計算に出てくる、偏微分方程式の解の計算方法が分かりません。 本から引用します: ここで、弦を伝わる波の問題などで使われる波動方程式 { (∂^2) u(x,t) } / (∂t^2) - c^2 * { (∂^2) u(x,t) } / (∂x^2) = 0 (式7.33) を考えてみよう。ここで、u(x,t)は座標xの位置での時刻tにおける弦の変位を表わし、cは正の定数とする。そして、∞に長い弦を考え(すなわち、-∞<x<∞の範囲で考え)、境界条件は、すべての t>=0 に対して u(x,t)→0 (式7.34) (x→±∞) を満たすとする。つまり、無限遠では波が存在しないとする。更に初期条件は u(x,0) = f(x) { ∂u(x,t) } / ∂t |t=0 = 0 (式7.35) とし、ここでf(x)は x→±∞ で0に近付く絶対可積分な関数であるとする。また、上式の縦棒(|)の後のt=0は、「t=0での偏微分の値」という意味である。(式7.35)のように初期条件として2つの式を与えるのは、(式7.33)がtについて2階の微分方程式だからである。今の場合、xの無限領域での関数u(x,t)を取り扱うので、フーリエ変換を使った解法を用いればよい。 例題 初期条件(式7.35)と境界条件(式7.34)を満たす(式7.33)の解を求めよ。 [解] u(x,t)のxについてのフーリエ変換を F(k,t) = ∫[-∞,∞] u(x,t) e^(-ikx) dx (式7.36) と表す。(式7.33)にe^(-ikx)を掛け、xについて-∞から∞まで積分すると、熱伝導方程式(式7.20)を導いたときと同様な考え方から、 { (∂^2)F(k,t) } / (∂t^2) + (c^2) * (k^2) * F(k,t) = 0 (式7.37) ←質問箇所 を得る。この微分方程式の解は、 F(k,t) = C[1](k) e^(ickt) + C[2](k) e^(-ickt) (式7.38) ←これをどう導いたのかが不明 であることが、代入すれば確かめられる。ここで、C[1](k)、C[2](k)は任意のkの関数で ある。 ・・・以上、引用終わり。 私は偏微分方程式自体、変数分離とかいう方法でサラッとやっただけで、上記の方法は見たことがありません。ネットで検索しましたが、同様の式を見つけることが出来ませんでした。そんな私が敢えて解こうとすると: { (∂^2)F(k,t) } / (∂t^2) + (c^2) * (k^2) * F(k,t) = 0 第2項を右辺に移項する { (∂^2)F(k,t) } / (∂t^2) = - (c^2) * (k^2) * F(k,t) 左辺の(∂t^2)と右辺のF(k,t)を交換する { (∂^2)F(k,t) } / F(k,t) = - (c^2) * (k^2) * (∂t^2) 両辺をtで積分する(もう既に未知の領域…きっと2乗が減って1乗になるのでしょう…) ln{F(k,t)} * {∂F(k,t)} / F(k,t) = - (c^2) * (k^2) * ∫(1)(∂t^2) ln{F(k,t)} * {∂F(k,t)} / F(k,t) = - (c^2) * (k^2) * t (∂t) + C[1](k) もう一度両辺をtで積分するだろう雰囲気を漂わせたところでやめておきます。 もしかしたらln{F(k,t)}を積分しなければならないのでは、と思ったら思考が停止しました。多分、既に間違っているのでしょう。 …ということで、この偏微分方程式の解き方を教えて下さい。お願いします。

  • 波動方程式について

    現在波動方程式についての勉強をしています。 授業では d^2u(x,t)/dt^2=E/P*d^2u(x,t)/dx^2 (Eはヤング率、Pは物体の密度) という式で教わっているのですが、ネット「波動方程式」と検索してもこのような式で書いているところは一つもなく、もっとややこしい複雑な式を書いているサイトばかりでした。 はたしてこの数式も波動方程式と言うのでしょうか? そして方程式というからには何かしら解というものがあると思うのですが、この波動方程式の解はいったい何なんでしょうか? 解説よろしくお願いします。

  • 波動方程式の解き方

    以下の条件をみたす解 u(t,x)を求める問題についてです. 区間(0,L) ,t>0 で u_tt = a^2 u_xx (波動方程式) をみたして 初期条件 u(0,x) = 3cos(2πx/L) , u_t(0,x) = 2cos(πx/L) 境界条件 u_x(t,0) = u_x (t,L) = 0 をみたす解 u(t,x)を求める. (注: a^2 は aの2乗 ,u_tt は uのtについての2回偏微分 , u_t はuのtについての1回偏微分) 自分は変数分離の方法でコツコツやって(u(0,x) と u_t(0,x) がどちらか一方が0のときに解をもとめてそれぞれを重ね合わせの原理で足して答えをだしました) u(t,x) = (2L/aπ)cos(πx/L)sin(πat/L) + 3cos(2πx/L)cos(2aπt/L) という結果(たぶん正しいはずです)を得たのです.  しかし,この問題の ヒント として (ヒント: 周期2Lの偶関数に拡張するとよい. ちなみにcos(2πx/L),cos(πx/L)は2Lの周期をもっている) というヒントが書いてありました.  私にはこのヒントの意味がまったく理解できません. 偶関数に拡張って なにを拡張するのですか? 勝手に拡張していいものなのですか? 拡張することによってなにかいいことがあるんですか? ということを3日間ほど考えていたのですが,どうもわかりませんでした.  なにかわかる方がいましたら この偶関数に拡張する方法でu(t,x)を求める方法を教えていただきたいです. よろしくお願いします.

  • 波動方程式における変数分離法について

    まずu(x,t)の1次元波動方程式{((∂^2)u)/(∂t^2)}=(v^2)*{((∂^2)u)/(∂x^2)}について ここでもし、u(x,y)がxの関数X(x),Tの関数T(t)の積u(x,y)=X(x)*T(t)で表すことができればこの微分方程式を解くことができる。 まずu(x,y)=X(x)*T(t)を代入すると、 {((∂^2)u)/(∂t^2)}=(v^2)*{((∂^2)u)/(∂x^2)}はX*(T'')=(v^2)*(X'')*Tとなり、 これを(v^2)*X*Tで割ると{T''/(v^2)*T}=(X''/X)となる。 この式の左辺はTのみの式、右辺はXのみの式なのでこの式が任意のx,tで成り立つためには{T''/(v^2)*T}=(X''/X)=定数Aとならなければならない。そしてこの定数AについてA<0が成り立つ。 次にu(x,y,t)の2次元波動方程式 {((∂^2)u)/(∂t^2)}=(v^2)*[{((∂^2)u)/(∂x^2)} + {((∂^2)u)/(∂x^2)}]についても同様にu(x,y,t)がxの関数X(x),Yの関数Y(y),Tの関数T(t)の積X(x)*Y(y)*T(t)で表すことができればこの微分方程式を解くことができる。 u(x,y,t)=X(x)*Y(y)*T(t)を上の2次元波動方程式に代入すると、 X*Y*T''=(v^2)*[{(X'')*Y*T}+{X*Y*(T'')}]となり、 この両辺を(v^2)*X*Y*Tで割ると、{(T'')/((v^2)*T)}={(X'')/X}+{(Y'')/Y}となる。 この式の左辺はtのみ、右辺はxとyの式なので、この式が恒等的に成り立つためには{(T'')/((v^2)*T)}={(X'')/X}+{(Y'')/Y}=定数Aとなる必要がある。そしてA<0でなければならない。 ※以上が変数分離法による1次・2次波動方程式を解く手順ですが、まず1次について「{T''/(v^2)*T}=(X''/X)の左辺はTのみの式、右辺はXのみの式なのでこの式が任意のx,tで成り立つためには{T''/(v^2)*T}=(X''/X)=定数Aとならなければならない」というのは一体どういう意味なのでしょうか? もし左辺がXのみの式でなかったら、例えばXとYの式だったら=定数Aとはおけないのでしょうか? 同じく2次の場合についても、「{(T'')/((v^2)*T)}={(X'')/X}+{(Y'')/Y}の左辺はtのみ、右辺はxとyの式なので、この式が恒等的に成り立つためには{(T'')/((v^2)*T)}={(X'')/X}+{(Y'')/Y}=定数Aとならなければならない」とありますが、これもどういう意味なのでしょうか? 詳しいかた教えてください。お願いします。

  • 1・2次元の波動方程式

    ∂^2u/∂^t2=c^2∂^2u/∂x^2 を以下の境界条件の下で解け。 (1)x=0でu=0、x=Lでu=0 (2)x=0でu=0、x=Lで∂u/∂x=0 という問題をやっているのですが、この微分方程式の解き方がわかりません。1、2階の線形、非線形微分方程式は習ったのですが、この微分方程式は、左辺はtで微分していて、右辺はxで微分していて、どういうことなのかわかりません。また、これが2次元になった場合はどのようにすればいいのでしょうか?

  • 古典的な波動方程式

    古典的な波動方程式 (∂^2)u/∂x^2=1/(v^2)・(∂^2)u/∂t^2 これに u(x,t)=Ψ(x)cosωt を代入すると (∂^Ψ)u/∂x^2+(ω^2)/(v^2)Ψ(x)=0 になるとあるのですが どのように計算すれば良いのでしょうか? 代入すると (∂^2)Ψ(x)cosωt/∂x^2=1/(v^2)・(∂^2)Ψ(x)cosωt/∂t^2 となり、これ以上すすめませんでした。

  • 波動方程式について

    wikibookの http://ja.wikibooks.org/wiki/%E6%8C%AF%E5%8B%95%E3%81%A8%E6%B3%A2%E5%8B%95_%E6%B3%A2%E5%8B%95%E6%96%B9%E7%A8%8B%E5%BC%8F%E3%81%AE%E6%80%A7%E8%B3%AA のページにあるu(x,t)=f(x+vt)+g(x-vt)を f(x+vt)=1/2(u(x,t)-v*∫(∂u(x,t)/∂x)dt) に変換する過程の式を教えてください.この式はwikibookには書いていませんが分かる方お願いします. また,もう一つお聞きたいのですが (1/v^2)*(∂^2u(x,t)/∂t^2) を積分すると単純に (1/v^2)*(∂u(x,t)/∂t) となりますか?なるとうれしいのですが. 式が見難いとは思いますが上記ふたつについて回答お願いします.

  • 弦を叩いたときの振動の様子

    理系大学一年です。 以下の問題について質問があります。 ----------------------------------------------- 両端を固定されている長さLの弦がある。この弦のある点(0<a<L)を t=0でたたいたとすると、t=0でu(x,0)=0, ∂u(x,0)/∂t=δ(x-a) ただしu(x,t)は時刻tにおける場所xでの弦の変位を表している。 この弦の運動の振動の様子を調べよ。ただし弦の波の速度をcとする。 ----------------------------------------------- この問題を解くにあたりまして、以下のように考えました。 ・両端を固定してあるのだから、初期条件がでる。  →u(0,t)=0,u(L,t)=0 ・おそらくδ関数があるので、δ関数の性質をうまく使った解き方  なのではないか。  →積分すると1・・・など。 しかし、ここから先のとっかかりが思い浮かびません。 波の速さが与えられているので、波動方程式に代入したいのですが なかなかうまくいきません。 解く流れを教えてください。よろしくお願いします。

  • 波動の問題です

    (x,t)における波動の変位が (a)y=5sin(6x-5t) 、 (b)y=3sin3(x+3t) で表わされる時、この波動の振幅、波長、振動数、角振動数、周期、伝橎速度速度を求めよ。なお、x,t の単位はそれぞれm、sとする。また、波動はx軸の正負いずれの方向に伝搬しているか。 という問題です。解き方と解答を教えていただけたら幸いです。どうかよろしくお願いします。