• 締切済み

式の証明です。

関数f(x,y)を  ∂^2f/∂x^2 + ∂^2f/∂y^2 = 0 を満たす関数とする。円Cを点(a,b)を中心とした半径rの円とするとき f(a,b) = 1/(2π)∫{0~2π}f(a+rcosθ,b+rsinθ)dθ が成立することを証明しなさい …という問題なのですがどうやっていいものか悩んでいます。 できれば詳しく回答してくれると大変助かります。 よろしくお願いします。

みんなの回答

  • nuubou
  • ベストアンサー率18% (28/153)
回答No.2

Cの周りにおいてはz-α=r・exp(i・θ)とおけるから dz=i・r・exp(i・θ)・dθ=i・(z-α)・dθ であるから g(α)=1/(2・π)・∫(0~2・π)dθ・g(α+r・exp(i・θ)) 両式の実部をとれば f(a,b)=1/(2・π)・∫(0~2・π)dθ・f(a+r・cosθ,b+r・sinθ) となる

  • nuubou
  • ベストアンサー率18% (28/153)
回答No.1

命題:Dが単連結開集合であればDで調和な実関数fはDで正則な関数gの実部に等しい というのがあるみたいですよ だとしたら問題の式はコーシーの積分表示式の g(α)=1/(2・π・i)・∫(|z-α|=r)dz・g(z)/(z-α) の実部ではないでしょうか? ただし α=a+i・b z=x+i・y real(g(z))=f(x,y) ∫(|z-α|=r)dzは左回りの線積分

関連するQ&A

  • 楕円の証明について教えて下さい

    楕円の公式x2/a2+y2/b2=1をx=rcosθ, y=rsinθを代入してr=a/1+ecosθを導きたいのですが、途中までしかどうしてもとけません。導き方を教えて下さい。宜しくお願いします。

  • 円と直線の交差する範囲(重積分)

    重積分の範囲が、円の方程式と1次関数になっている場合の考え方をご教授願います。 ∬ y dxdy 積分範囲 x^2+y^2≦4 かつ y≧2-x x^2+y^2≦2^2 より、原点を中心とした半径2の円が考えられます。 極座標でx=rcosθ, y=rsinθとすれば、0≦r≦2 , dxdy=r drdθ 又、y=2-x のグラフは点(0,2)と点(2,0)で円周と接するので、 積分範囲は半径2の円の第一事象の部分 [0≦θ≦π/2かつ0≦r≦2] から [0≦x≦2かつ0≦y≦2-x] を引いた範囲が積分範囲と考えて良いのでしょうか? つまり、∫[0 2]dr∫[0 π/2] rsinθr dθ-∫[0 2]dx∫[0 2-x] y dy の式に累次積分できるんですかね? お手数をお掛けいたしますが、ご指導願います。

  • 定積分の問題

    [1]変数変換を用いて、次の重積分を求めよ。 ∬D √(a^2-x^2-y^2)dxdy , D={(x,y);x^2+y^2≦ax} 半径=aの球を考える。 x^2+y^2+z^2=a^2であり。 z=√(a^2-x^2-y^2)となり、被積分関数は上半球となる。 一方、積分領域は D={(x,y);x^2+y^2≦x} ={(x,y);(x-a/2)^2+y^2≦(a/2)^2} となり。 中心点(a/2、0)で半径a/2の低円の円柱が切り取る 体積をもとめることになります。 ・積分領域「-π/2、0」の場合 r=acosθ x=rcosθ y=-rsinθ 関数行列式|D|=-rとなります。 つまり dxdyーーーーーー>-rdθdr・・・・・(3) V=∫[-π/2、0]∫[0,acosθ](- r)√(a^2-r^2) dr dθ =∫[-π/2、0]dθ∫[ 「(1/3){(a^2-r^2)^3/2}」 [r=0,acosθ] =a^3/3∫[-π/2、0](sinθ^3-1)dθ =a^3/3[(ーθーcosθ+(1/3)cosθ^3)[θ=-π/2、0] =(a^3/3)(ーπ/2ー2/3)・・・・・(4) となり、正解 (a^3/3)(π/2ー2/3)になりません。 どこが間違いでしょうか?

  • 角速度一定の証明

    角速度一定の証明 質量mの物体が半径Rで円運動する時のωが一定になることの証明、またその値を求めよ 極座標を使ってx=rcosωt y=rsinωtとして計算していくと 加速度をa、速度をvとして a=-ω^2r という式がでてきて a,rはともに一定だからωは一定 これは最後ちょっと強引な感じがするのでどなたかちゃんとした回答を教えていただきたいです

  • 定積分の問題(2)

    [1]変数変換を用いて、次の重積分を求めよ。 ∬D √(a^2-x^2-y^2)dxdy , D={(x,y);x^2+y^2≦ax} 半径=aの球を考える。 x^2+y^2+z^2=a^2であり。 z=√(a^2-x^2-y^2)となり、被積分関数は上半球となる。 一方、積分領域は D={(x,y);x^2+y^2≦x} ={(x,y);(x-a/2)^2+y^2≦(a/2)^2} となり。 中心点(a/2、0)で半径a/2の低円の円柱が切り取る 体積をもとめることになります。 ・積分領域「-π/2、0」の場合 r=acosθ x=rcosθ y=rsinθ ヤコビヤン|J|=rとなります。 つまり dxdyーーー>rdθdr・・・・・(3) V=∫[-π/2、0]∫[0,acosθ]( r)√(a^2-r^2) dr dθ =∫[-π/2、0]dθ 「(-1/3){(a^2-r^2)^3/2}」 [r=0,acosθ] =a^3/3∫[-π/2、0](1-sinθ^3)dθ =a^3/3[(θ+cosθ-(1/3)cosθ^3)[θ=-π/2、0] =(a^3/3)(π/2+2/3)・・・・・(4) となり、正解 (a^3/3)(π/2ー2/3)になりません。 どこが間違いでしょうか

  • 関数の極限

    杉浦光夫「解析演習」42ページ~43ページの例題 2.17(3)です。 次の関数の R^2 における連続性を調べよ. f(x, y) = (x^2)y/(x^4 + y^2) ((x, y) ≠ 0 のとき) f(x, y) = 0 ((x, y) = 0 のとき) [解答]では (a, b) ≠ (0, 0) となるすべての点 (a, b) で f(x, y) が連続関数となることはすぐわかる. 原点 (a, b) = (0, 0) における連続性を調べるため, 極座標表示 x = rcosθ, y = rsinθ を利用する. すなわち, g(r) = f(rcosθ, rsinθ) とおき, r → +0 のとき, θ に関係なく g(r) → f(0, 0) = 0 となるかどうかを確かめればよい. g(r) = r(sinθ)(cos^2(θ))/((r^2)cos^4(θ) + sin^2(θ)) より, R^2 上連続である. とかかれています。 質問のひとつめは,「θ に関係なく」の意味です。 0 ≦ θ < 2π の範囲にある θ を任意にひとつ取って固定するという意味でしょうか。 それなら, r → +0 のとき g(r) → 0 となるのは納得できます。 質問のふたつめは, θ を固定した場合に r → +0 のとき g(r) → 0 になれば, (x, y) → 0 のとき f(x, y) → 0 がいえたことになるのでしょうか。 θ を固定すると近づけ方は限定され, (x, y) → 0 のとき f(x, y) → 0 がいえたことにならないと思います。

  • 2次元極座標表示での運動方程式の証明

    2次元極座標表示での運動方程式の証明をやってるのですが rベクトルがあって x=rcosθ y=rsinθ というところからスタートしてます つまりrベクトルの先端の成分がx,yから始まっています x=rcosθ y=rsinθ から x''cosθ+y''sinθ=r''-rθ'^2=r''・er y''cosθ-x''sinθ=2r'θ'+rθ''=r''・eθ erはr方向の単位ベクトル eθはそれとは垂直な方向の単位ベクトルです まで行ってつまってしまいました しかし最後は Fr=m(r''-rθ'^2) Fθ=m(2r'θ'+rθ'') になっています それで答えとしてはあってるみたいですが そうなるとr''-rθ'^2と=2r'θ'+rθ''がaということになります これはどうしてそうなるのでしょうか?    'は微分記号です

  • 円の式を微分方程式で表すと・・・

    y=x上に中心のある任意半径の円が満たす微分方程式が分かりません。 円の式 x^2+y^2=c^2 (cは円の半径、中心は原点) (x-a)^2+(y-b)^2=c^2 (a,bは中心の座標、cは円の半径) という式からとりあえず、 xdx+ydy=0 (x-a)dx+(y-b)dy=0 となるだろうことは分かります。(もしかしてこの時点で間違ってますか?)しかし、これだと中心が原点、もしくは任意の(a,b)のときだけです 。 「(a,b)はy=x上の点とする」と定義してしまえばそれまでなのかもしれませんが、それだと意図が違う のでは?、と思うのです。 「y=x」という、円の中心を取る関数をどう絡めたらいいのかがわかりません。 ヒントをお願いします。

  • 3重積分について

    ∫(D) |x| + |y| + |z| (dx)^3 領域D:{x^2 + y^2 + z^2≦a^2, a>0}という問題で、解が(3πa^4)/2になるはずなのですが、極座標に変換する段階でいまいち分かりません。自分なりにやると、 x=rsinθcosφ, y=rsinθsinφ, z=rcosθ (0≦r≦a, 0≦θ≦π, 0≦φ≦2π)として、ヤコビアンがr^2 sinθになり、 ∫(D) |x| + |y| + |z| (dx)^3 =∫[0→2π]dφ∫[0→π]dθ∫[0→a]dr (r^2 sinθ)(rsinθcosφ+rsinθsinφ+rcosθ) このようになるのですが、自分がこれを解いていくと違った解になり、正解にたどり着きません。この変換が間違っているのでしょうか?単に途中の計算が間違っているのでしょうか? よろしくおねがいします。

  • 半径Rの円の中に同確率で分布する2点間の距離がR以下である確率

    無線通信の隠れ端末問題という問題について考えて いたら次のような数学的問題にぶち当たりました。 「半径Rの円(円C)の中に2つの点A,Bを置く。 (2点を円の中のどこに置くかはランダムとする。) この時、その2点間の距離がR以内である確率を求めよ。」 現時点での私の考え方は以下の通りです。 まず、円Cを中心とするX,Y座標を描き、 ひとつの点Aを置くとき、その点が円Cの中心から xとなる確率は 半径(x+Δx)の円と半径xの円の間の面積が π((x+Δx)^2-x^2)であり、その面積と円全体の面積の比から π((x+Δx)^2-x^2)/πR^2=2xΔx/R^2 次に点AがCの中心からxの距離にあるときに、 点Aから半径Rの円を描き、その円(円A)と円Cの重なる領域の範囲を求め、それを円Cの面積で割ることで 点BがAから半径Rの中に入る確率が求められ、 それは 円Cと円Aの交点のY座標が大きいほうを交点を点g、gからX軸に下ろした垂線とX軸の交点を点f、円CとX軸の交点(Xがプラスの方)を点eとし、角gOeをθとすると 円CのOgeからなる扇形から三角形Ogfを引いたものの4倍となる つまり重なる部分の面積は 4{θ(R^2)/2-(1/2)Rcosθ*Rsinθ}となり 点BがAから半径Rの中に入る確率はこれを円Cの面積πR^2で割った 2*(θ-cosθ*sinθ)/π よって、点Aが円Cの中心Oからxの距離にあり、 かつ、点Bが点Aから距離R以内の位置にある確率は (2xΔx/R^2)*{2*(θ-cosθ*sinθ)/π} これをx=2Rcosθの条件からdx=-2Rsinθdθと置換して積分すると(x:0→R、θ:π/2→0) とやったのですが、結果1になってしまいました。 どこで間違ってしまったのでしょうか。 あるいは全く別の手法でサクリと解けないでしょうか。 みなさんの知恵をかしてください。 よろしくお願いします。