• ベストアンサー

複素数の質問です。

KaitoTVGAMEKOZOUの回答

回答No.2

なかった。ところで(2)がわからないみたいだけど、三角関数の合成というのはご存知? 教科書ではsinの場合だけど当然cosの場合もあるやつ。あの公式は美しくないので私は覚えていないのだけど、加法定理の逆ををやっているだけなので簡単に理解できると思う。 あの公式は、部分積分法の公式と同様に覚えてはいけません。部分積分法の公式は積の微分公式の逆をやっているだけだからね。 ヒント R(1/2cosθ+√3/2sinθ、√3/2cosθ+1/2sinθ) でRxをcosで表し、Ryをsinで表す。位相(sinやcosの中身)は同じにすることに注意すること。 さて、出来たら回答を「お礼」に書くこと。

karuu
質問者

お礼

回答ありがとうございます。 質問内容に書けば良かったのですがそれはやってみました。 僕が最初に回答したとき、Rを変形して、R(cos(θ-60),sin(θ+60)) という形にしてcos^2θ+sin^2θ=1に代入するのかなと、思ったのですが 位相が同じにならずにどうしていいか解らなかったので、このやり方では できないのかなと、思ったんです。この先どうしたらいいか解らないので、 もう少しヒントもらえませんか?よろしくお願いします。

関連するQ&A

  • 三角関数

    大至急お願いします。数学の問題です Oを原点とする座標平面上に定点A(3,3√3)、動点P(p,q)をとる。 ただし、0≦θ<2πとして、 p=√3cosθ-sinθ q=√3sinθ+cosθ とする。 (1)線分OAの長さは(ア)であり、線分OAとx軸のなす鋭角はπ/(イ)である。 また、 q=(ウ)sin{θ+π/(エ)} と変形でき、同様に p=(ウ)cos{θ+π/(エ)} と変形できる。また、 OP=(オ) である。 (2)線分APの長さが最大になるのは、θ=(カ)/(キ)πのときであり、このとき、線分APの長さは(ク)である。 (3)△OAPが直角三角形になるようなθの値は、全部で(ケ)個ある。 途中式もお願いします

  • 高校数学です

    楕円(x^2)/(a^2)+(y^2)/(b^2)=1 (a>0,b>0)の第1象限の部分の任意の1点をPとする。 Pにおける楕円の接線とx軸,y軸との交点をそれぞれQ,R,原点をOとする。 (1)△OQRの面積の最小値を求めよ。 (2)線分QRの長さの最小値を求めよ。 P(a*cos(θ),b*sin(θ))(0<θ<π/2)とおいて接線を出してQ,Rの座標を出してみたら、(1)はきれいな形になって最小値出せたんですが、(2)がうまく出せません。 Pのおき方が違うんでしょうか?? 正しい解法教えて下さい。

  • 複素数の2乗

    複素数平面において、3点A(-1),B(1),C(√3i)を頂点とする△ABCが正三角形であることを用いて、3点P(α),Q(β),R(γ)を頂点とする△PQRが正三角形であるとき、 等式α²+β²+γ²-βγ-γα-αβ=0が成り立つことを証明せよ。という問題で、途中、両辺を2乗すると解答にあるのですが、納得できないので説明お願いしたいです。 △PQR∽△ABCのとき  (γ-α)/(β-α)=(√3i-(-1))/(1-(-1))=(1+√3i)/2 よって 2(γ-α)-(β-α)=(β-α)・√3i この式を2乗するのですが、2乗したら右辺が -(β-α)・√3iのときを含んでしまうと思います。 以前はsinx=cosxを、sin²x=cos²x として計算するとsinx=-cosxの解も含むと、注意を受けました。その他、線分ABとBCとCAなども、線分を2乗して方程式をつくり、Cの座標を求める問題もありますが、AB²=(-BC)²または(-CA)²の場合が含まれているか、気になり出しました。両辺を2乗するのは両辺が正のときに限るとしてきたので、戸惑っています。 2乗して導けた等式は、△PQR∽△ABCの条件を満たしているか不安です。どなたか解答のやり方でよいことを説明してください。お願いします。

  • 三角関数の問題です

    「原点を中心とする半径1の円Oの周上に定点A(1 , 0)と動点Aをとる。円Oの周上の点B,Cで、PA^2+PA^2+PC^2がPの位置によらず一定であるような点B,Cを求めよ。」 という問題なのですが、B,Cを(cosα,sinα),(cosβ,sinα)で表したとき 0≦α<β<360゜となっていたのですが、なぜこうなるのかわかりません。 まずなぜα<βなのでしょうか?α≦βだと思うのですが。 それと、なぜβ<360゜とかけるのかわかりません。 ぐるぐる回ると考えて、360nをひっつける必要があると思ったのですが。 ちなみにα<βのように大小関係を設定するのはα,βが対称の時ですよね。

  • 複素数・数列の問題について

    次のような問題ですが、解けません。計算間違いだと思いますが、煮詰まったので、どなたか助けてください。 ------------------------------ ・複素数平面上に原点OとP1(1,0)を取る。P1から、長さ1/√2の、反時計回り45度に取った線分を引き、終点をP2とする。更に点P2から、長さ(1/√2)^nの、直線P1P2から反時計回り45度に取った線分を引き、P3とする。同様に線を引いていき、取る点を各々Pnとする。 (1).P5を求めよ (2).Pnの極限を求めよ ------------------------------ 解答では、Pn - Pn-1 は 公比 1.√2(cosπ/4 + i sin π/4) の等比数列 と書かれています。 問題文を見る限り、Pn = Pn-1 + (1/√2) Pn-1 (cosπ/4 + i sin π/4) の式であり、等比数列には見えません。 何が間違っているのでしょうか。 Pn=Pn-1 + (1/√2) Pn-1 (cosπ/4 + i sin π/4) (cosπ/4 + i sin π/4) = k として、

  • 図形の問題です。教えてください!

    半径10、中心角∠AOB=2π/3の扇形OABがある。 弧AB上(ただし、両端を除く)に点Pをとり、点Pを通り半径OAに平行な直線 と半直線OBとの交点をQとして∠POQ=θとする。 ∠OPQ=2π/3-θより、三角形OPQに正弦定理を適用することで OQ=□sinθ/√□+□cosθと表せる。 次に三角形OPQの面積をSとするとS=□(sinθcosθ+sin^2θ/√□)となり、 (□/√□)×(√□sin2θ-cos2θ+□)と表せる。 なのでSはθ=□π/□のとき、最大値□√□をとる。 解き方が分かりません。 詳しく教えてもらえたらうれしいです。

  • 図形と方程式

    Oを原点とする座標平面上に、半径がすべてr(rは正の定数)である3つの円C1、C2、C3がある。円C1、C2の中心は、それぞれO、A(-6,8)である。また、円C3は2つの円C1、C2に外接し、その中心Bは第1象限にある。 (1)線分OAの二等分線の方程式を求めよ。 →自力で解けました。 y=3/4x+25/4です。 (2)円C1、C2が2点L、Mで交わり、LM=5であるとき、rの値と点Bの座標を求めよ。 →△ONLで三平方の定理を使い、点Bのx座標をaとおき、OB^2=(2r)^2であることに式に表す。を使いそうです。 (3)(2)のとき、円C3の周上に動点Pをとる。OP^2+AP^2の最小値を求めよ。 →P(s,t)とおくとOP^2+AP^2になり、NP^2もs、tの式にするそうです。 解答と解説をお願いします。

  • 定積分と面積(扇形に近似)

    点P(x、y)は(x、y)=θ(cosθ、sinθ)で与えられるxy平面上の動点とする。 線分OPの通過部分の面積を求めよ。 θが⊿θだけ変化したときのS(θ)の変化量⊿Sは下の扇形OPQの面積に近似できる。とあって説明が続いているのですが、図のθ(∠PORの部分)は⊿θの誤りでしょうか? また、OR=⊿θですか?

  • この問題解ける人いませんか

    楕円x^2/9+y^2=1上の点をP(3cosα,sinα)(0<=α<=π/2)とし、原点Oと点Pを結ぶ線分とx軸の正の部分のなす角をθとするとき、次の問に答えろ。 (1)線分OPの長さが3/√5以上になるθの範囲を求めよ。 (2)|αーθ|の最大値をもとめよ。

  • 極方程式

    (1)xy平面上の点P(P≠原点O)に対し(→)OP=(rcosθ,rsinθ)(r>0)  とするとき、点Pを通り(→)OPに直交する直線の方程式を求めよ (2)楕円x^2/a^2+y^2/b^2=1 (a,b>0)の任意の接線に原点Oから下ろした  垂線の足をPとし、(→)OP=(rcosθ,rsinθ)(r>0)と定める  このときrをθで表せ (1)の場合、Pは原点中心半径rの円上の点であり、求める直線は Pでの接線なので (rcosθ)x+(rsinθ)y=r^2  すなわち(cosθ)x+(sinθ)y=r としてはダメなのでしょうか? 極方程式で表せとは書いてないですが、それも可能なんでしょうか? (2)については楕円と接線の接点をT(acosφ,bsinφ)とおいて 接線の式を出し、これが(1)の接線と等しい、として cosφ=(acosθ)/r ,sinφ=(bsinθ)/r  これを(sinφ)^2+(cosφ)^2=1に代入してr>0より r=sqrt{a^2(cosθ)^2+b^2(sinθ)^2}としたのですが これが正しいのかわかりません。 また、これは極方程式と呼べるのでしょうか? 教えて下さい