• ベストアンサー

回転系と慣性系

回転系の問題を解いているうちに、どうしても分からない矛盾に出くわしました。 元々は複雑な問題だったのですが、疑問点以外の要素を捨象したところ、 次のような問題に帰着されるようです。 慣性系に対して角速度ωで回転する系において、回転中心から初速ゼロで半径方向に一直線に遠ざかって行く物体があるとします(このような運動を起こすためには適切な外力を加えなければならないでしょう)。ある時刻において物体が中心からrの距離に到達し、その速度が半径方向外向きにvとなったとき、この瞬間までに外力が物体に対してなした仕事Wを求めることを考えます。 物体の運動エネルギーは0から(mv^2)/2に増加し、これは外力と遠心力とがそれぞれ物体に与えた仕事の和に等しいはずです。遠心力は正の仕事 ∫(0からrまで)mxω^2dx = {m(rω)^2}/2 を与えるので次の式が成り立ちます。 (mv^2)/2 = {m(rω)^2}/2 + W これよりW = m{v^2 - (rω)^2}/2となります。 次に、この議論を慣性系において行ってみます。運動の終点で物体は半径方向外向きにv、接線方向にrωの成分を持つ速度を有しています。したがって運動エネルギーは m{v^2 + (rω)^2}/2となり、これが外力のなした仕事に等しいので、 W = m{v^2 + (rω)^2}/2 となってしまい、先ほどの回転系で得られた結果と一致しません。 一体どこが間違っているのでしょうか。

質問者が選んだベストアンサー

  • ベストアンサー
  • redbean
  • ベストアンサー率38% (130/334)
回答No.1

遠心力だけで運動する物体を考えてみましょう。例えば、回転する座標軸 を剛体の細い棒とみなして、それに滑らかに串刺しされた団子を考えます。 スタートは回転中心からにはできませんが、ほんのわずか団子をずらして やれば、棒を滑っていくはずです。 これを慣性系から見れば、棒が団子を押す力が外力です。力の方向は棒に 垂直です。この外力は仕事を行って団子に運動エネルギーを与えます。 さて、回転する棒に張り付いた回転座標系で見てみましょう。角速度が 一定の場合、団子にかかる力は以下の通りです。 回転系から見た力= 慣性系から見た外力 + コリオリの力 + 遠心力 最初に「遠心力だけ」という言葉を使いました。「慣性系から見た外力」 と「コリオリの力」が相殺されているということですね。 慣性形から見た外力とコリオリの力は団子の進行方向に垂直に働きます から仕事はしません。遠心力だけが仕事をして団子に運動エネルギーを 与えることになります。 以上の話が解決の糸口になると思いますが、いかかでしょうか。

zabuzaburo
質問者

お礼

よく考えてみると、回転系と慣性系とで外力による仕事を同じWとしてはいけないですよね。そこが間違っていました。回転系で考えると、この運動を起こすためには、半径方向外向きに外力を加えるのではダメで、コリオリの力を相殺できるだけの接線方向の成分も持たせないといけないんですね。そのことを忘れていました。ありがとうございます!おかげで謎が解けました。

その他の回答 (4)

  • stomachman
  • ベストアンサー率57% (1014/1775)
回答No.5

おおお、符号をチョンボしていましたか。どうもすいません。 さて、そうしますと具体的にどんな外力が加わったかは明らかになった訳ですから、仕事の問題も解決したも同然ってことですね。 お邪魔いたしました。

zabuzaburo
質問者

お礼

いつも質問にお付き合い下さってありがとうございます。極座標や回転系は今まで避けて通ってきたのですが、これを機に徹底的に理解することができました。

  • stomachman
  • ベストアンサー率57% (1014/1775)
回答No.4

やっちまいました。 θ'=ωを入れ忘れてました。すると、 「一定角速度ωで回転する串から団子が受ける力が、常に円周の接線方向を向いている。」は ((ω^2)r-r'')cos(2ωt)+(2ωr')sin(2ωt)=0 になるように思います。 つまり r''=(ω^2)r+(2ωr') tan(2ωt) これだと、やっぱり90°回ると吹っ飛んでしまうような… じゃあ、単純なところで、慣性系の直交座標でもやってみましょう。 団子の位置<x,y>=<r cos(ωt), r sin(ωt)> 団子の速度<x',y'>= <r' cos(ωt)-ωr sin(ωt), r' sin(ωt)+ωr cos(ωt)> 団子の加速度<x'',y''>=<(r''-(ω^2)r) cos(ωt)-2ωr' sin(ωt), (r''-(ω^2)r)sin(ωt)+2ωr' cos(ωt)> んでもって、加速度は円周の接線方向を向いているのだから、 x''cos(ωt) = y'' sin(ωt) よって、 (r''-(ω^2)r) (cos(ωt))^2-2ωr' sin(ωt)cos(ωt)= (r''-(ω^2)r)(sin(ωt))^2+2ωr' sin(ωt)cos(ωt) (r''-(ω^2)r)( (cos(ωt))^2-(sin(ωt))^2)-4ωr' sin(ωt)cos(ωt)=0 (r''-(ω^2)r) cos(2ωt)-2ωr' sin(2ωt)=0 あれれ、同じになっちゃった。 うーむ。分からなくなってしまいました。 ご質問に回答する以前のところで躓いてしまってますね。とほほ。

zabuzaburo
質問者

補足

加速度が円周の接線方向に生じるという条件は x''cos(ωt) = y'' sin(ωt) ではなくて、 (x, y)・(cos(ωt), sin(ωt)) = 0 (内積ゼロ) すなわち x''cos(ωt) = - y'' sin(ωt) なのではないでしょうか。これで計算すると r'' - (ω^2)r = 0 となって、めでたく redbean さんの式と一致しますね。

  • redbean
  • ベストアンサー率38% (130/334)
回答No.3

90°で無限遠ですか? 慣性系の極座標表示で運動方程式を書いてみると、 θ'=ω,θ''=0 だから... m(r''-r(θ')^2)=F_r=0 2mr'θ'=F_θ 第2式は単にこの運動に必要な力を説明しているだけ なので無視して、 r''=r ω^2 これを解いて r(t)=a exp(ωt) + b exp(-ωt) ( r(0)>0, r'(0)=0 ならば a,b>0 かな?) となって、有限時間では有限の範囲におさまるのでは?

  • stomachman
  • ベストアンサー率57% (1014/1775)
回答No.2

直接の回答ではありませんが… 運動方程式を作ってみたら、こんな風になりましたよ。 摩擦のない串に刺さった団子の、回転中心からの距離をr(t), 回転する串の各速度をωとするとき、 (r-r'')cos(2ωt)+2r' sin(2ωt)=0 ここにプライム(')はtによる微分です。書き換えれば r+2r' tan(2ωt)=r'' ということになるから、r(0)=0, r'(0)>0で出発しようが、r(0)>0, r'(0)=0で出発しようが、串が90°回るとrは無限遠にまで吹っ飛んでしまうという結論になります。 面白いです。(が、ほんまかいな?計算間違いの常習犯なもので。)

関連するQ&A

  • 慣性力を観測する人について

     高校物理の慣性力について質問です.理解の仕方でつまづいています.  以下不正確な表現があれば申し訳ございませんが、助言をいただけましたら幸いです.  1.教科書では,加速度aで運動する電車の中で静止している質量mの物体の力のつりあいを理解するには見かけの力-maがはたらくとすればよい,と記述されています.誰がそう考えれば「よい」のでしょうか.電車の中の人ですか,外の人ですか.中の人だとすると,はたして電車の中にいる人が,加速度aで運動する非慣性系にいて物体に見かけの力-maがはたらいている,と自分で分かるのでしょうか.加速度aは非慣性系にいて知り得る値ですか.それとも電車の中では力のつりあいが成り立つための何らかの力がはたらいているとだけわかり,後で電車の外から教えてもらってその大きさがmaとわかる,ということですか.ストーリーが読み取れません.  2.遠心力について.教科書では,半径r角速度ωで回転している円盤上でばねに取り付けられた物体が回転しているとき,円盤とともに回転している観測者は,ばねの弾性力とそれにつりあう遠心力が物体にはたらいていて,遠心力の大きさはmrω2(乗)と考える,とあります.r,ωは,観測者が非慣性系にいて知り得る値ですか.それとも観測者は,自分が物体と一緒に半径r角速度ωで回転していると予め知った上で,大きさmrω2(乗)の遠心力がはたらいていると考えることができるのでしょうか.  上記1,2について,a,r,ωは慣性系から観測されますが,それらを非慣性系でも観測できるように教科書が読めてしまうので,納得しにくいです.

  • コリオリの力

    (糸で結んだ物体mが角速度ω、半径rで円運動を行っている)回転系から見ると、物体には遠心力が働いている。  次に、慣性系で物体が静止している場合を考える。この物体を回転座標系にいる観測者が見ると、静止している物体は逆向きに半径r、速さv=rωの円運動をしている事になる。回転系から見た時、先に述べた遠心力に打ち勝ち、かつ、この円運動を保つ為には向心力が必要だからmrω^2の2倍の力が内向きに働いているはずである。 なぜmrω^2の2倍なのかが理解できません。遠心力に打ち勝つには同じだけ(mrω^2)あれば釣り合うのでは?解説お願いします。

  • 回転座標系と等速円運動

    少し抽象的な質問です。 一般に、合力Fが働いている物体(質量m)を、等角速度ωで直行固定XY軸に対し時計回りに回転する直行xy座標で考えた時、 mx¨(←ツードットのつもりです)= Fx + 2mωy・(←ドット)+ mω^2 x …(式(1)), my¨= Fy + 2mωx・+ mω^2 y, 運動方程式は上のようになると思います。 一方、平面で半径rの等速円運動をする(角速度ω)物体について、回転の中心に向かってx軸が正方向になるように動く座標を設定した時、それを静止した観測者の立場から運動方程式を立てると、 mrω^2=Fx (x¨=rω^2 ←この式は回転座標系から導出されますよね…?) となると思います。(働いている力は簡単のためまとめてFとしました) これを、物体に乗った立場から考えると、 m×(←かける)0 = Fx - rω^2 …(式(2)) となり、遠心力が式のかたち上現れる、ということまでは分かるのです。 そこで、これらの式たちがどう関連しているか、ということを考えてみようと思ったのですが、混乱してしまいました。 式(1)の mω^2 x の x に r を代入すると式(2)の遠心力に等しくなるので、何か上手く対応しているのかと思ったのですが…。 回転座標系、慣性系、非慣性系、考えているうちに自分がどの立場で式を立てているのか混乱してしまいました。 曖昧な質問で申し訳ないですが、どうしても頭がすっきりしないので質問させて頂きました。 説明不足があったらまた書き足します。 何か関係があるのか、知っている方がいらっしゃいましたら、ご回答宜しくお願いします。 補足:高校生なので、コリオリの力についてはあまり分かりません。今回は関係ない…と思うのですが…。

  • 慣性モーメントの問題の解説が分かりません!!!

    次の解説の意味が分かりません。 ●解説 回転体の運動エネルギーは、回転体の回転軸周りの慣性モーメントをI[kg・m*2]、角速度をω[rad/sec]とすると E=Iω*2/2  (*2は2乗をあらわす) で表される。また慣性モーメントIは、物体の質量をm[kg]とすれば一般に I=mk*2    と表すことができる。ここで、kは回転半径であり物体の形状によって決まる値である。半径Rの円板においては k*2=R*2/2 となる。 何故、k*2=R*2/2 になるのですか??? k*2=R*2だと思うのですが・・・ 解説が間違っているのですか? どなたか、分かる人教えて下さい。

  • 慣性モーメント,回転半径とは?

    慣性モーメントとは質量mなる物体の微小部分び質量をdmその部分と特定の軸Aとの距離をrとするときr^2とdmの積の物体の全部分についての総和を軸Aに関する慣性モーメントと言う。 これが本にある定義です。 ここで∫r^2dmの次元はm^2・kgですよね? 曲げモーメントやその他のモーメントは次元がNmです。 次元が全く違うのになぜモーメントという名がついてるのでしょうか? また慣性とついてるのはなぜでしょうか? それと 物体の全質量をMとすると軸からkの距離に全質量が集まったと考えれば 慣性モーメントI=Mk^2となり kを回転半径という。 これが回転半径の定義と本にはあります。 なぜこれが回転半径なんでしょうか? どなたかお願いします。

  • 遠心力は慣性力?

    慣性力は加速度運動している観測者から物体の運動方程式を立てるのに必要な力であると認識しています。遠心力も慣性力という記述がありました。回転する円形のテーブルの上でテーブル上の別の位置の物体の運動を記述するには遠心力が必要ですよね? 円運動する物体は向心力が働いて円運動するのでした ここで疑問なのですが慣性力は加速方向と逆向きに働くように見える力ですよね しかし先ほどの状況だと加速度の向きと逆に慣性力として遠心力が働いていると考えるのに無理があるようにおもえます どう考えたらいいのでしょう わかりずらくてすいません

  • バネでつながれた物体の円板上の円運動(高校物理)

    円運動  バネ定数 k、自然長 L のバネの一端に質量 m の物体を接続し、もう一端を静止している円板の中心点 O に固定した。この状態からバネをr - L だけ伸ばすとと、物体はその位置に静止した。 (1)円盤上で物体が静止できる r の最大値 R を求める。重力加速度の大きさを g、物体と円板の静止摩擦係数をμとする。                   k(R-L) = μmg.   ∴ R = L + μmg/k .                  (2)物体を r(L < r < R) の位置に置き、円板を静止の状態から回転させ、その速さをゆっくりと増加させたところ角速度がω を越えたとき物体はすべり出した。ω の値を求める。  遠心力で考えれば、角速度がω に達した瞬間のつり合いの式は   k(r-L) + μmg = mrω^2. ・・・・・・・ (*)   ω = √( (k(r - L) + μmg)/mr)   <----------- r ---------->   <------ L ------->   O・///////////////////////-■      ← k(r - L)   mrω^2 →      ← μmg 【質問】 [Q1]ωm > ω のとき、(*)のつり合いのバランスは崩れます。ということは遠心力により外向きに力を受けるので物体の円運動の半径は r より大きくなります。それを r' としたとき物体にかかる力のつり合いの式は   k(r'-L) = mr'ω^2. ・・・・・・・ (**) でいいのでしょうか。つまり円板の各質点の角速度はωm ですが、物体は円板上をすべりながら回転しているのですから、物体と円板は同じ角速度ではあり得ず、   角速度がω に達した瞬間   角速度がω をわずかに越えた瞬間 を比較すれば(*)よりωのままでいいと思うのですが。  また r' と(1)のR との関係はどうなるのでしょうか? [Q2]円板が静止しているとき、静止摩擦力は外向きにはたらきます。ということは角速度が小さいうちは静止摩擦力は外向きにはたらくはずです。角速度がω0になったとき遠心力とバネの弾性力が等しくなったとします。このとき静止摩擦力は 0 になりますが、   k(r-L) = mr(ω0)^2. ・・・・・・・ (**) でバランスがとれているわけですから、静止摩擦力は 0 になったからといってすべったりせず、物体も円板と同じ角速度ω0で回転するのですよね?

  • 円運動の速度rωを時間微分するって?

    回転半径rの円運動の速度がrω(ω;角速度)というのは理解できるのですが、これをさらに微分すると、rω2乗となるのが理解できません。どなたかこの微分の仕方か、または、rω2乗が角加速度となることを教えてください。向心力が物体の質量に角加速度を乗じて求められ、同時に慣性力が遠心力であることは理解できてているつもりでいますが、角加速度がどうしてrω2乗であらわされるのかが腑に落ちません。どなたか、教えてください。

  • 剛体の並進と回転

    鉄アレイのような形をした剛体の運動を考えます。 同じ重さの2つの小球があります。(●:質量m) そのうちの1つが2vでやってきて重さの無い棒にくっつきます。     ←● | ● ● | ● この棒でつながった鉄アレイのような形の物体が無重力状態の中でどのような並進運動と回転運動をするのかを求めます。 m:1つの小球の重さ r:棒の長さ 2v:飛んでくる小球の速さ rが0の時は合体後の物体の速さをv'とすると (2m)*v'=m*(2v) からv'=vの速さで合体物が並進運動するとわかりました。 しかしr≠0の時の式に自信がありません。 並進の式:(2m)*v'=m*(2v) 回転の式:Iw=r*m*(2v) 角速度をw、慣性モーメントをIとしました。 で考えましたが、これだとI=2m*r^2から w=v/r よって角速度v/rを持ちながら並進でvの速さを持ちながら重心移動する、といったんは結論を出しました。 しかし、これだとr=0の時の完全非弾性衝突の場合と比べ、 回転のエネルギーの分だけエネルギーが増していると思うのです。 衝突する場所が違うだけでエネルギーが増すので間違っていると思うのです。 運動量全部が並進運動に変わるとしておきながら、回転運動も起こると考えている所が間違っているのかな と考えているのですが正しい解き方はどうやるのかもわかりません。 よろしくお願いいたします。

  • 回転エネルギーを考慮した場合のエネルギー保存則で求めた速さには、どうして物体の大きさが関係しないのでしょうか?

    例えば、高さh(m)の斜面の上から球を転がすとします。 高校では、初めに持っていた位置エネルギーが斜面の一番下に着くときにすべて運動エネルギーになるので、そのときの速さv(m/s)を計算することができました(v=(2gh)^0.5)。しかし、それは球が質点に近づいていった場合の極限だと思います。実際、球の慣性モーメントI(kg・m^2)、角速度をω(rad/s)とすると、回転エネルギーは1/2Iω^2で表されるので、初めに持っていた位置エネルギーは、この回転エネルギーにも分配され、質点と考えた場合より速さは小さくなります。 でも、この慣性モーメントIは、半径をr(m)、質量をm(kg)とすると2/5mr^2、また、角速度ωは、球の速さをv(m/s)とすると、v/rで表されるので、この関係式を使って速さを求めると、v=(10/7gh)^0.5となり、この球の半径rを含まない式になります。 私の思考実験では、半径rを小さくしていくと、どんどん速さvは(2gh)^0.5に近づいていくような気がしてならないのですが、この結果からは、球がいくら大きくても小さくても(質点であっても)、速さは変わらないという結果となり、何か釈然としません。 どなたか分かりやすく説明して頂けないでしょうか?