• ベストアンサー

位相です

<X,d1>,<Y,d2>をともに距離空間とする。d1が離散距離ならば、任意の関数f:X→Yが連続であることを示せ。 ここで、 d1,d2により定まるX,Y上の距離位相を、それぞれT1,T2とする。 距離位相の定義から、距離dのもとでの開集合と、距離位相Tのもとでの開集合は一致するから、fは連続になりますよね?? でも、 このことをうまく、数学的に記述して、答えることができません。 だれか、教えてください!!

質問者が選んだベストアンサー

  • ベストアンサー
  • ojisan7
  • ベストアンサー率47% (489/1029)
回答No.1

これは、ほとんど明らかだと思います。 d1が離散距離ですから、Xには離散位相がはいります。 したがって、Xのすべての集合は開集合となります。 よって、Yの任意の部分集合の逆像は開集合となります。 このことは、f:X→Yが連続であることを示しています。

nepiashin
質問者

お礼

パソコンに触れない状況にいたのでお礼が遅くなり申し訳ございません。 わかりました。ありがとうございます!!!

関連するQ&A

  • 位相

    Xは非空の集合である。 次の定義によって与えられているd:X×X→Rは距離である。   d(x,y)=0 (x=yの時)   d(x,y)=1 (x≠yの時) dをX上の離散距離とする。 このとき、dによって定まる距離位相Tは、X上の離散位相(T=P(X)パワーセット)であることを示せ。 疑問I この問題で、まず、任意のXの部分集合Gがdのもとで開集合になっていることを示せばいいかなと思いました。 (1)G=φのとき  これは定義から、開集合です。 (2)G≠φのとき  Gの中に開球が作れればいいんですよね??  でも分かりません。 疑問II (1)(2)が示せたら、dによって定まる距離位相Tは、X上の離散位相(T=P(X)パワーセット)をどのように導くか分かりません。 この2つの質問に誰か答えてください!!

  • 有限集合からなる位相空間における写像の連続性

    ある位相空間Xから別の位相空間Yへの写像fが連続であるとは、Yの任意の開集合Oの逆像f^-1(O)が開集合であると定義されていると思いますが、この定義に従うと、有限集合に位相を入れた位相空間Xからの別の位相空間Yへの写像は、位相空間Xの集合が全部開集合となり、必ず連続になるのでしょうか。

  • 位相と連続

    何度か、このサイトで位相に関して質問をしている初学者です。 おかげさまをもちまして、理解が進んだと感じています。 さて位相の言葉を使うと、 「位相空間Yの開集合Vのfによる逆写像 f^{-1}(V)=UがXの開集合である場合、f : X→Y は連続」 などというと思いますが、この表現と通常のイメージでいうところの関数の連続/不連続とを対応させて理解を進めたいと思っています。 以下、1次元Euclid空間 X から 1次元Euclid空間 Y への写像 f : X→Yを考えます。 1)x=0でジャンプする関数(x=0で定義されている) : f(x)=x (x <= 0), f(x)=x+1 (x>0) この場合、たとえば (1/2, 3/2) のf による逆写像は f^{-1}((1/2, 3/2)) = [0, 1/2) となります。これは X の開集合ではないので、f(x)は不連続。 2)x=0でジャンプする関数(x=0で未定義): f(x)=x (x < 0), f(x)=x+1 (x>0) 【質問】 ●(1)の考え方、論証はこれで正しいでしょうか。 ●(2)を(1)のと同様の論理で考える場合、 「Yの下位集合 *** の f による逆写像 f^{-1}(***) が Xにおける開集合でないので、f は不連続」 となると思いますが、この場合 *** はどういった集合になり、どういう理屈で逆写像はXの開集合ではない、と結論付けられるのでしょうか。 (x=0で定義されていないので、Xの位相がいわゆる1次元Euclid位相ではない?) 以上、ご教示よろしくお願いします。

  • 位相と連続2

    http://okwave.jp/qa/q8225961.html にて、位相に関して質問をしたものです。 皆様からの回答を受けて、さらなる疑問が湧いたので、続けて質問をさせてください。 1) x = 0 でジャンプする関数(x = 0で未定義) f(x)=x (x<0), f(x) = x + 1 (x > 0) を考えます。位相の考え方でいくと、この関数は連続となるとの結果でした。 では、解析学の立場からいってε-δ論法によって、この関数は連続である、と証明できるのでしょうか? (未定義な点 x= 0 をまたいでグラフが繋がっているだの繋がっていないだのということ自体ナンセンスということでしょうか。。。) 2)f(x) = 1/x は、不連続関数であると思うのですが、 「Yの開集合 *** の逆像 f^{-1}(***) がXの開集合でない」 というロジックで証明できるのでしょうか? それとも、この関数も(1)と同様にx=0で定義されていない関数なので、やはり連続なのでしょうか? 3)(1)と(2)の結果次第なのですが、位相空間の世界では連続だけど1次元Euclid空間では不連続である、というようなことはあるのでしょうか(何かトンチンカンなことを聞いている、ということであればご指摘ください) 以上、よろしくお願いします。

  • 距離と位相

    x,y,zが数直線上にならんでいます。d(x,y)=d(y,z)=1, d(x,z)=2という感じです。 つまり、それぞれ一ずつ離れて、x,y,zの順番でならんでいることになります。 定義域のほうも通常のRでけっこうです。通常のRの距離を考えて、ここから開集合、位相を導入します。このときの位相はつぎのようなものでよいのでしょうか。 (x), (y), (z), (x,y), (y,z) (x,y,z)と空集合。 ごく初等的な例で、距離と位相の関係をつかみたく思います。当方文系ですので、上記で誤っていた場合ですが、どこが違うのかなるだけ初等的にご説明いただければ幸いです。 どの点についても、うまく開球をとれば当該集合に含まれるという開集合の定義が焦点だと思います。この開集合の理解があっていれば、間違っていないように思いますが、自信はありません。

  • 位相数学について再び質問です

    http://oshiete1.goo.ne.jp/qa2686308.htmlで質問したものです。 また自分なりに考えた解答を添削&教えてください。 問1-1)(X、Ox)(Y,Oy)を位相空間とする     X × Yの直積位相とは何か? これがさっぱりわかりません。 問1-2)XとYがハウスドルフ空間ならば、X × Yもハウスドルフ空間であることを示せ。 これもさっぱりです。たぶん問1-1を使うと思います。 問2)(X、d)を距離空間とする    距離dの定めるXの位相Odの定義とはなにか? これもわかりません、どういう意味でしょうか?位相Odが距離空間の定義を満たすということでしょうか? 問3)Xがコンパクトで、A⊂Xが閉集合ならAもコンパクトであることをしめせ。 Xがコンパクトだから、Xの任意の開被覆が必ずXの有限被覆を部分集合として含んでいる。ここまではいいと思います。たぶんAがコンパクトでないと仮定して矛盾を示すと思います。これ以上がどうしてもわからないです。    

  • 位相数学の問題です

    問1。 x∈R^2,r>0に対しR^2の部分集合Ur(x),Ir(x)を Ur(x)={y∈R^2:d2(x,y)<r} Ir(x)={y∈R^2:d∞(x,y)<r} とする。 ここでd2はEuclid距離,d∞はノルムⅠⅠ・ⅠⅠ∞により定義される距離(のn=2の場合)とする。 このときy∈Ir(x)に対しUp(y)⊂Ir(x)となるp>0を具体的に求めろ。 問2 (X,D)を位相空間。△:X→X×X、△(x)=(x,x)を対角線写像とする。このとき、△は位相空間Xから積空間X×Xへの連続写像であることを示せ。 問3 X、Yを位相空間とする。写像f:X→Yに対し、F:X→X×Y、F(x)=(x,f(x))とする。fが連続ならばFはXからの直積空間X×Yへの連続であることを示せ。 問4 X×Yを位相空間(X,Dx)と(Y,Dy)の直積空間とする。Xの任意の点xに対してX×Yの部分空間{x}×Y(={(x,y)∈X×Y:y∈Y})はYと同相であることを示せ。 問5 (X,Dx)、(Y,Dy)を位相空間、(Z,Dz) (Z=X×Y)を直積位相空間、px:Z→X、py:Z→Yを射影とする。次の主張が正しければ証明し、誤りであれば反例をあげろ。 (i)射影pxは開写像である (ii)射影pxは閉写像である

  • 位相

    X を位相空間,Y をコンパクト位相空間とする.このとき, (1) U を直積位相空間X × Y の開集合としたとき, A = { x | {x} ×Y ⊂ U } はX の開集合であることを示せ. これを解くためのヒントをください。 Aに含まれる任意の点 x1のある近傍がAに含まれることをしめすんですね。そのような近傍をどうとればいいんでしょうか。

  • 位相空間についての質問です。

    位相空間(T,Ot)(Tは集合でOtは位相)として、a,b,cはTの元とします。 連続写像φ:[0,1]→T、φ(0)=a、φ(1)=bが存在して、 連続写像ψ:[0,1]→T、ψ(0)=b、ψ(1)=cが存在するとします。 このとき、連続写像g:[0,1]→T、g(0)=a、g(1)=cは存在するのでしょうか? もし存在するなら証明してほしいです。 自分の持ってる教科書の連続写像の定義は、 f:(T,Ot)→(S,Os)が点a∈Tで連続。 ⇔f(a)∈Uとなる任意のU∈Osに対して、あるV∈Ot,a∈Vが存在して、f(V)Uとなる。 と定めています。 一応、自分で考えたのは、 g:[0,1]→T、g(x)=φ(2x)(0≦x≦1/2)、g(x)=ψ(2x−1)(1/2≦x≦1)なのですが、x=1/2で連続なのかわかりません。g:[0,1/2]→T, g:[1/2,1]→Tは連続だと思います。 g(1/2)∈Uとなる開集合U⊂Tを任意に取ります。 g:[0,1/2]→Tの連続性から1/2∈V1、V1⊂[0,1/2] となる開集合が存在してg(V1)⊂Uで、 g:[1/2,1]→Tの連続性から1/2∈V2、V2⊂[1/2,1] となる開集合が存在してg(V2)⊂Uとなる事はわかります。 V1もV2も[0,1]の相対位相の元なので、V1UV2は、[0,1]の開集合となるのかわからないです。 (V1もV2も[0,1]の位相の元([0,1]の開集合)ならば、V1UV2は、[0,1]の開集合となる事はわかります。)

  • 集合・位相

    集合・位相初心者です。 授業で開集合と閉集合、近傍の定義を教えてもらったのですが、理解できず、困っています。 以下は、授業で使っているプリントに載っている定義です。 X:集合 T:Xの部分集合からなる集合族 (X,T):位相空間 とする。 Xの部分集合UがTの元であるとき、Uを開集合という。 また、Xの部分集合Fの補集合がTの元であるとき、Fの閉集合という。 点x∈Xに対して x∈U゜ を満たすXの部分集合Uを近傍という。また、このような近傍全体のなす集合族をxの近傍系といい、U(x)で表す。 具体的な例で教えて頂けると助かります。 例えば、集合X={1,2,3,4,5}、位相T={φ,{3},{4},{3,4},{1,3},{1,3,4},X}として、位相空間(X,T)をつくると、この(X,T)の開集合、閉集合、点3の近傍(点は適当に選びました)はどうなるのか。 集合・集合は初心者なので、詳しく教えて頂けると嬉しいです。 ご教授、よろしくお願い致します。