• 締切済み

ポアソン過程のジャンプは必ず1であることの証明

母数λのポアソン過程N(t)(N(t)が平均λtのポアソン分布に従うLevy過程、別の言葉で言えば法則の意味の加法過程、定義をはっきり述べると、定常増分、独立増分で、確率連続な確率過程)のサンプルパス(標本路=見本路)はジャンプを持ちますが、そのジャンプの幅が1であることを証明することはできますか?あるいはその記述のある書物をご存知あらば教えてください。 ポアソン過程を指数分布(待ち時間の分布)から具体的に構成してやればこのことは自明ですが、上は法則による定義です。したがってサンプルパスに制限がかかっていないので、直接証明をすることができずにいます。法則同値を言うだけで結論は従うものなのでしょうか...

  • adinat
  • お礼率78% (245/312)

みんなの回答

  • kony0
  • ベストアンサー率36% (175/474)
回答No.1

あまりよくわかってないので的外れだったらごめんなさい。 ポアソン過程は、その定義に「希少性」って入っているのではないでしょうか?

adinat
質問者

お礼

コメントありがとうございます。希少性、独立性、定常性を元にした定義もあるのかも知れませんが、今考えている問題は、 (P1) N(t)=0 a.s. (P2) N(t)は独立増分、かつ定常増分。 (P3) N(t)は確率連続。 (P4) N(t)は平均λtのポアソン分布に従う。 という4つの条件のみを満たすような確率過程N(t)に、いわゆる希少性のような性質が存在するか?ということです。言い換えれば希少性は上記4条件に内在されているか、あるいは希少性まで付け加えたければ、新たに(P5)としてそれを明記しないといけないのか、という問題です。

関連するQ&A

  • ポアソン過程と非斉時ポアソン過程における到着時間

    以下の確率変数が互いに independent かどうか,そして identically かどうかについてお伺いします. 確率変数 Xi を i 番目のイベントの到着時刻とし,確率変数 Yi を i-1 番目の到着と i 番目の到着の到着時間間隔とします.1 <= i <= n. 以下は私の理解ですが,正しくない箇所をご指摘いただければ助かります. Xi と Yi はポアソン過程に従う場合: Xi は independent で identically で,ガンマ分布に従う. Yi は independent で identically で,指数分布に従う. Xi と Yi は非斉時ポアソン過程に従う場合: Xi は independent ではなく identically でもない. Yi は independent であるが identically ではない. (従って,非斉時ポアソン過程は再生過程ではない.) よろしくお願い致します.

  • ポアソン過程の問題です。わかる方教えてください。

    保険会社がクレームを受け取りました。そのクレームはポアソン過程でラムダを2とします。 それぞれのクレームサイズは2の時確率は0.5 サイズ5のとき確率は0.3 そしてサイズ10の時確率は0.3です。T (時間) を最初に大きなクレームサイズ 10がくる時間と定義します。T以前のトータルのクレーム数(期待値)を見つけなさいです。 わかる方教えてください。お願いします

  • ポアソン分布

    {Xj}を同一分布をなす互いに独立なベルヌーイ確率変数列とする(ここで、P[Xj=1]=p, P[Xj=0]=1-p)。SN=X1+X2+・・・+XNを確率変数Xjのランダムな個数N個の和とする。ここで、Nは平均λのポアソン分布をなすものとする。このとき、SNは平均λpのポアソン分布をなすことを証明せよ。という問いに対してなのですが、 Xj の和をとる個数 N がポアソン分布に従って変化するとき、Xj の和の分布を考えればよいことはわかりました。 N 個の確率変数の和が n になる確率は N C n p^n (1-p)^(N-n) であり、和を取る確率変数の数が N である確率はポアソン分布なので e^(-λ) λ^N / (N !) 和が n になる確率は、 確率変数が N=n 個でかつ和が n 確率変数が N=n+1 個でかつ和が n 確率変数が N=n+2 個でかつ和が n ・・・・ で N が無限個まで確率の和を取ればよいので、 Σ(k=0→∞)の{ (n+k) p^n (1-p)^k } と考えたのですが、ここから先に進めません。 おそらく途中で間違えてしまったと思うのですが、ご指摘いただけないでしょうか。

  • ポアソン分布

    ポアソン分布 ポアソン分布が発生確率が低い事象の記述に適しているという理由がいまいち分かりません。 導出の過程で n→∞, p→0, np→λ としたから、 n≒∞、p≒0のような事象に適しているという認識であっていますか? 発生が稀でないものに適用したら二項分布での結果とは全然近似しないのですよね?

  • ポアソン分布において、各事象の和の分布は?

    ある事象がポアソン分布に従って分布しているとします。 ポアソン分布の中心は x =λ とします。 よって確立分布 f(x)は√λ 程度の広がりを持ちます。 すなわち、x がλ±√λの範囲に収まる確率はほぼ68%。---(1) この事象がN回おきたとき、その和Σf(x) は、 どの程度の広がりを持ちますか? (1)のような意味での広がりです。 それから、Nは10か20か程度の数という前提です。

  • 確率変数XがP(X=1)=P(X=2)なるポアソン分布を持つならばP(X=4)を

    もし確率変数XがP(X=1)=P(X=2)なるポアソン分布を持つならばP(X=4)を求めよ。 という類の問題なのですがどなたか解き方をご教示ください。 ポアソン分布とは 「ポアソン分布 特定の事象が起こる確率pはきわめて小さいが、試行回数nが非常に多いためにその 事象が何回かは起こるときその生起回数の分布として表れる。 パラメータλのポアソン分布の確率密度関数は p_λ(k)=(λ^k)e^-λ/k!である。ポアソン分布の平均、分散はともにλである」 といったものです。

  • ポアソン分布の導出過程の式変形について

    ポアソン分布の導出過程の式変形について教えて下さい。よろしくお願いします。 画像1行目から2行目にかけて、組み合わせ公式であるn!/x!(n-x)!が、n(n-1)...(n-x+1)/x!に変形されていますが、この式変形はどのように行われたのでしょうか。 n!=n(n-1)(n-2).....3*2*1 x!=x(x-1)(x-2).....3*2*1 (n-x)!=(n-x)(n-x-1)(n-x-2)....3*2*1 上のように書き換えができることはわかるのですが、n(n-1)...(n-x+1)/x!にどうやって変形したのでしょうか。浅学のため、詳しく解説していただけると幸いです。 その他の導出過程に疑問点はありません。この点だけです。 よろしくお願いします。

  • Xはポアソン分布をμ=100で持つとせよ。P(75<X<125)における下界を決定する為にチャビシェフの不等式を使え

    皆様,こんにちは。確率の問題なのですがどうぞ宜しくお願い致します。 [問題]Xはポアソン分布をμ=100で持つとせよ。P(75<X<125)における下界を決定する為にチャビシェフの不等式を使え。  なのですがどのようにして解けば宜しいのでしょうか? ググってみましたら ポアソン分布とは 「ポアソン分布 特定の事象が起こる確率pはきわめて小さいが、試行回数nが非常に多いためにその 事象が何回かは起こるときその生起回数の分布として表れる。 パラメータλのポアソン分布の確率密度関数は p_λ(k)=(λ^k)e^-λ/k!である。ポアソン分布の平均、分散はともにλである」 といったものです。 チェビシェフの不等式とは 「確率変数Xの平均E[X]=μ,分散V[X]=σ^2が共に有限ならば任意のk(>0) 対して,P(|X-μ|≧kσ)≦1/k^2 ※離散の分布,連続の分布問わずこの不等式成立する」

  • ポアソン分布について

    ※長文です。すべてに解答できない場合は,特に★★★★★より後の部分についてだけでも教えてください。よろしくお願いします。 テキストでは二項分布からポアソン分布を導いています。 二項分布は, ・各試行の結果,Aかその余事象aのいずれかが必ず起こる ・各試行は独立である ・各試行におけるAの生起確率Pr{A}は常に一定でpである を満たす試行をN回行った時,Aの発生回数Xの確率分布です。 ここからNp=λ(=const.)を維持しながらN→∞の極限を考えることで,ポアソン分布を導いています。これは次のような理解でよろしいでしょうか。すなわち, 箱の中にN個の玉が入っていて,赤が1個,黒がN-1個の内訳になっています。ここから1個取り出したとき,それが赤である事象をAとすると,Pr{A}=1/Nです。そして取り出した玉を戻して,何度も同じ試行を行うと, ・各試行で必ずA(赤が出る)かa(黒が出る)が起こる ・各試行は明らかに独立である ・各試行においてPr{A}=1/N=p(一定)である を満たし,ベルヌーイ試行列を成します。ここでpNを一定値1に保つ場合を考えると,任意のNに対して,p=1/Nでなければならないので,結局,Nをnだけ増すとき,赤玉は1個のままで黒玉をn個増せば,p=1/(N+n)となり,pN=1を維持します。よって,pN=1を保ちつつN→∞とすることは,書き方は不正確かもしれませんが,感覚的には赤玉1個,黒玉無限個,試行回数無限回ということでいいでしょうか。そして, 『この試行で赤を3回取り出す確率を求めよ。』は,Pr{X=3}=exp(-1)×1^3/3!=1/6eということですか? 逆に,以上の問題において,Aは赤が出る事象ですし,pは赤が出る確率です。では,以下の問題はポアソン分布と関係があるそうなのですが,事象Aと確率pが何に相当するのかがわかりません。 ★★★★★ ペトリ板の細菌の集落を顕微鏡により観察し,円形の視野に正方形の網の目をかけ,各正方形の区画内の細菌集落数kを数える。その結果を以下に示す。各kに対する正方形の数が観測度数である。 k:=正方形内の細菌集落数 f:=観測度数 Np:=理論度数 k f Np 0 5  6.1 1 19 18.0 2 26 26.7 3 26 26.4 4 21 19.6 5 13 11.7 6 8  9.5 各区画内を順番に検査することを試行ととらえて,そこに集落がある事象をA,その確率をpとすると考えると,集落がたくさんある区画の説明がつきません。集落がない事象をA,1個ある事象をB,2個ある事象をC,…としていくとこれはベルヌーイ試行列ではありません。この問題において, ・そもそも何を試行としているのか ・そしてその試行のもとで必ず起こるA,aはそれぞれ何か という点が全く分かりません。どのように解釈すればこの問題はポアソン分布と関係する問題なのでしょうか。 長くなってしまいましたが,よろしくお願いします。

  • 中心極限定理をポアソン分布へ

    中心極限定理をポアソン分布に応用した際に、e^(-n) * Σ (n^j)/(j!) をn->無限大 にしたら1/2似収束するという事実はわかるのですが、これは証明できるのでしょうか?もし、そうであれば証明のアドバイスをください。