• ベストアンサー

3次方程式の置き方です

himitsuの回答

  • himitsu
  • ベストアンサー率34% (21/61)
回答No.1

方程式である以上、α、β、γを解として(t-α)(t-β)(t-γ)とおいた場合、右辺は必ず0となり、 (t-α)(t-β)(t-γ)=0 となるわけですから、最高次の係数をaとした場合でも、 a(t-α)(t-β)(t-γ)=0 となり、両辺をaで割れば再び同じことになるのでは?

s-word
質問者

お礼

>方程式である以上、α、β、γを解として(t-α)(t-β)(t-γ)とおいた場合、右辺は必ず0となり、 (t-α)(t-β)(t-γ)=0 となるわけですから、最高次の係数をaとした場合でも、 a(t-α)(t-β)(t-γ)=0 となり、両辺をaで割れば再び同じことになるのでは? なるほど、そうですね!!「3次」方程式と書かれているから、3次の係数は0ではないことは明らかなんですね。喉に引っかかってた小骨がとれたような感じです。お返事どうもありがとうございました。

関連するQ&A

  • 解と係数の関係

     xの3次方程式 ax^3+bx^2+cx+d=0 の3つの解α、β、γとするとき解と係数の関係を書き、それを証明せよ。 というもんだいがあるのですが 解答をみると まず解と係数の関係を記す。 つぎに証明に入り 因数定理でa(x-α)(x-β)(x-γ)としてこれを展開して 恒等式として係数比較して。。。。。というながれがかいてあるのですが 私は解答の方法を思いつけず、 まず解と係数の関係を記す。 α+β+γ=-b/a αβ+βγ+γα=c/a αβγ=-d/a これを変形して b=-a(α+β+γ) c=a(αβ+βγ+γα) d=-aαβγ としてはじめの3次方程式へ代入 ax^3-a(α+β+γ)+a(αβ+βγ+γα)-aαβγ=0 ここでx=α、β、γ を代入すると左辺=0=右辺となりこの方程式の解は x=α、β、γとわかる またこの方程式は3次方程式なので解の個数は高々3つ よってこの方程式の解はα、β、γのみ というふうに書いたのですがどうなんでしょうか? この問題は解がα、β、γならば α+β+γ=-b/a αβ+βγ+γα=c/a αβγ=-d/a が成立 をしめすべきなのですが わたしの解答では α+β+γ=-b/a αβ+βγ+γα=c/a αβγ=-d/a ならば 解はα、β、γ を示してしまっていると思います しかし「解がα、β、γのみ」と書いたので 解がα、β、γのならば α+β+γ=-b/a αβ+βγ+γα=c/a αβγ=-d/a という逆も示せているのではないかとも思います 自分ではよくわかりませんのでどなたか教えていただきませんか?

  • 三次方程式の解と係数の関係で教えてください。

    問題 三次方程式の解をα、β、γとするときα^3+β^3+γ^3-3αβγを求めよという問題 の解答で α^3+β^3+γ^3^-3αβγ=(α+β+γ)x(α^2+β^2+γ^2ーαβーβγーγα) という解説が説明もなくでてくるのですが、どういう考え方でそんなに簡単にでてくるのでしょうか? よろしくお願いします。

  • xについての方程式x^3+ax^2+bx+8=0が3つの実数解α,β,

    xについての方程式x^3+ax^2+bx+8=0が3つの実数解α,β,γ(α<β<γ)を持ち、それらがある順序で等比数列をなし、また、ある順序で等差数列をなす。このとき、定数a,bおよびα,β,γの値を求めよ。 解答には、α<β<γよりα,β,γの順に並んでいる。      等差数列だから2β=αγ,等比数列だからb^2=acとなる。      等差数列の考えはこれで良いが、等比の場合b^2=acとa^2=bcとc^2=abという3通りを考えなけ     ればならないみたいです。      これと、解と係数の関係よりα+β+γ=-a                   αβ+βγ+γα=b                    αβγ=-8を使って解くみたいなんですが、こっから代入しまくるら     しいんですが、どうに始めて最後まで解けばいいかわかりません。      わかる方いましたら、ぜひ教えてください!!お願いします!! 

  • 高次方程式 解答お願いします!

    3次方程式 f(x)=x^3+ax^2+bx+c=0 の3つの解をα, β, γとする。 (1) α+β+γ, βγ+γα+αβ, αβγ の値をa, b, cで表しなさい。ただし、「F(x)=0の解がAである ⇔ F(x)=(x-A)(・・・)」を利用して答えを導き出しなさい。 (2) tについての次の式を簡単にしなさい。 f(α+t)+f(α-t)+f(β+t)+f(β-t)+f(γ+t)+f(γ-t) (3) yについての方程式 f(α+y)+f(β+y)+f(γ+y)=f(α-y)+f(β-y)+f(γ-y) が0以外の実数解をもつための条件を求めなさい。ただしa, b, cは実数とする。

  • z^3=1+√3i を求める問題です。

    z^3=1+√3i を求める問題です。 解と係数の関係からα+β+γ=0, αβ+βγ+γα=0, αβγ=1+√3i として連立方程式を立てましたが、上手くいきません。 どのようにして求めるのでしょうか?アドバイスいただければと思います。宜しくお願い致します。

  • 複素数と方程式の解

    3次方程式x^3-2x^2+x+1=0の三つの解をα、β、γとする。この時αβ、βγ、αγを三つを三つの解とするxの三次方程式を作れ。ただし、x^3の係数は1とする。 解と係数の関係よりαβ+βγ+αγ=1、αβγ=-1、α+β+γ=2。よってαβ・βγ・αγ=1。という所まで求めました。ここから先の考え方を教えて下さい。回答、よろしくお願いします。

  • 虚数

    早速なのですが、 3次方程式x^3+ax^2+bx+c=0・・・・・(1)があり、その1つの解αは、α=2/1+iである。(1)の3つの解α,β,γについて、α^3+β^3+γ^3=4が成り立つ時、a,b,cの値を求めよ。 という問題で、条件より、x^3+ax+(2a-2)x-2a+4=0 解と係数の関係より、α+β+γ=-a αβ+βγ+γα=2a-2 αβγ=-2a+4 これを、α^3+β^3+γ^3=4に代入したら、何度やってもaが2になってしまいます、答えを見ると、-4なんですが、計算ミスでしょうか?また、どこかおかしいところがあるでしょうか? よろしくお願いします。 Ps 違うやり方はわかります。(解説に載ってたもっとも一般的っぽいやり方)

  • 高次方程式

    nを整数とする。3次式x^3 -19x^2 +nx +84の因数分解を x^3 -19x^2 +nx +84=(x-α)(x-β)(x-γ)とする。 α、β、γが全て整数であるならば、α、β、γの値は小さいほうから順に アイ、ウ、エオである。 という問題なのですが、 解と係数の関係より α+β+γ=19 αβ+βγ+γα=n αβγ=-84 という式を出しましたが、これ以上進みません。 目標時間4分なのでそんなに難しくないのかもしれませんが、分かりません。 教えてください。

  • どちらの解法が普通ですか?

    問題: 「k(≠0)を実数とする。xの3次方程式(x^3) + (1 - k^2)x - k = 0 ・・・(1)が虚数解をもつとき次の問に答えよ。 (1)kの取りうる値の範囲を求めよ (2)方程式の解αβγの間に(α^3) + (β^3) + (γ^3)=-2(α^2) + (β^2) + (γ^2)・・・(2)が成立するとき、αは実数であることを示し、kの値と3次方程式の解を求めよ。」 (α^3) + (β^3) + (γ^3)=-2(α^2) + (β^2) + (γ^2)の条件式を翻訳するところについてなのですが、 解答では「(1)の式のxにそれぞれαβγを代入した3つの式、 (α^3) + (1 - k^2)α- k = 0 (β^3) + (1 - k^2)β - k = 0 (γ^3) + (1 - k^2)γ - k = 0 を立ててこの3つの方程式を次数下げの道具として用いるために3乗の部分を右辺に残して下のように整理し、 (α^3) = (k^2 - 1)α+ k (β^3) = (k^2 - 1)β+ k (γ^3) = (k^2 - 1)γ+ k この3つの式を足して (α^3) + (β^3) + (γ^3)=(α+β+γ)(k^2 - 1) + 3k ⇔(α^3) + (β^3) + (γ^3)=3k ((3)より) という式を立てて、 (2)の右辺に代入し、3(k^2 - 1)α+ 3k = -2(α^2) + (β^2) + (γ^2) という式を導いています。 それに対し私は解と係数の関係に注目し(1)から α+β+γ=0・・・(3) αβ+βγ+γα=1 - k^2・・・(4) αβγ=k・・・(5) という3つの式をたてさらに、 (α^3) + (β^3) + (γ^3) - 3αβγ=(α+β+γ)(α^2 + β^2 +γ^2 -αβ-βγ-γα) という因数分解の公式を用い、これに(3)(4)(5)を代入して、 (α^3) + (β^3) + (γ^3) - 3k=0 ⇔(α^3) + (β^3) + (γ^3)=3k という式を立てたのですがどちらが一般的で、どちらが優れていて応用性がきくのでしょうか。

  • AB+BC+CAが平方数となる表示

    AB+BC+CAが平方数となるような整数A、B、Cの表示はどうなるのか というのが質問内容です。 どうしてこのような疑問を思ったかというと デカルトの円定理の関係式(不定方程式)の整数解 http://okwave.jp/qa/q7341028.htmlをみて 疑問に思ったのですが、うえの質問によれば半径a,b,cの3つの円が それぞれ外接していて、その外側に半径dの4つ目の円が接しているときは 2(1/a^2 + 1/b^2 + 1/c^2 + 1/d^2) = (1/a + 1/b + 1/c - 1/d)^2 が成り立ち,任意の整数 α>β≧γ>0 に対して、 λ=2αβγ(α+β)-αβ(αβ-γ^2)-γ^2(α+β)^2 とし、 a=λα(αβ-γ^2)、b=λβ(αβ-γ^2)、c=λγ^2(α+β) d=αβγ2(αβ-γ^2)(α+β)    とおくと、 2(1/a^2 + 1/b^2 + 1/c^2 + 1/d^2) = (1/a + 1/b + 1/c - 1/d)^2 を満たすそうです。 曲率で考えるとA=1/a,B=1/b,C=1/c,D=1/dとすると 2(A^2+B^2+C^2+D^2)=(A+B+C-D)^2 つまり A^2+B^2+C^2+D^2+2(A+B+C)D-2(AB+BC+CA)=0 これをDについての二次方程式と思ってとくと D=-(A+B+C)±2(AB+BC+CA)^(1/2) だからAB+BC+CAが平方数で表されるよう様な整数A,B,C があるとDも整数となり曲率の整数解ができると思うのです。上で得られた半径の整数解 を参考にして逆数を取って考えると次のような解がAB+BC+CA=平方数をみたすと思います。 整数 α>β≧γ>0として A=αγ^2(α+β)、 B=βγ^2(α+β)、 C=αβ(αβ-γ^2)で AB+BC+CA=α^2β^2γ^2(α+β)^2と平方数になります。 質問は2点です。 (1)このようなA、B、Cの表示をどのようにもともとめたらいいのか、 (2)ほかにもAB+BC+CAが平方数となるようなA、B、Cの表示があるのか という2点です。 もしご存知でしたらおしえてください。 よろしくお願いいたします。