• ベストアンサー

2次元井戸型ポテンシャルの問題がわかりません

Umadaの回答

  • Umada
  • ベストアンサー率83% (1169/1405)
回答No.1

井戸型ポテンシャルはSchroedinger方程式を解く問題としては、比較的とっつきやすいものですね。 1. 波動関数をφ(x,y)と置き、Schroedinger方程式を書き下す。 -A^2 ∇^2 φ(x,y)=E φ(x,y) (1) ここに、A^2は (Planck定数を2πで割ったもの)^2/2m なる定数、mは粒子の質量。またこのとき定数をAでなくA^2とおいたのは後の計算上の技巧のため。 2. 変数分離型の解を求める。 すなわちφ(x,y)=X(x) Y(y)とおき、上の式に代入する。 -A^2 (Y(∂^2 X/∂x^2) +X(∂^2 Y/∂y^2)) = E X(x) Y(y) (2) 両辺をXYで除して -A^2 ((1/X)(∂^2 X/∂x^2) +(1/Y)(∂^2 Y/∂y^2)) = E (3) 第一項はxのみの関数、第二項はyのみの関数であり、(3)が恒等的に成り立つためには -A^2 (1/X)(∂^2 X/∂x^2) =E1 (4a) -A^2 (1/Y)(∂^2 Y/∂y^2) =E2 (4b) が必要十分である。ここにE1, E2は定数であり、E1+E2=Eの関係を満たす。 この方程式は簡単な線形2階微分方程式に帰着しますからすぐに解けますね((4a)の両辺にXをかけるだけ)。普通の2次元膜の振動と本質的に同じ問題です。 3. 境界条件を検討する。 井戸の外ではではVは無限大です。計算してみると分かるのですがここでは波動関数は恒等的に0になります。波動関数が境界x,y=0およびx,y=Lで滑らかにつながるという要請を考えると、 X(0)=X(L)=0 (5a) Y(0)=Y(L)=0 (5b) が境界条件として課されます。 4. 固有値を求める これは(4a)(4b)式に、得られた波動関数X(x), Y(y)を代入することで求まります。 E1, E2をそれぞれ求めて、最後に足せばよいわけです。 周期的境界条件はこの場合関係ありません。(なぜなら、井戸は一個しかないわけですから) もし井戸が多数個並んでいて、かつ井戸の障壁が有限の高さであれば周期的境界条件が関係してきます。この場合は粒子が取りうるエネルギーに幅が生じるます。(固体のバンド構造の話へとつながっていきます) *解き方の大筋は上でよいはずですが、細かいところでタイプミス、計算ミスをしているかも知れません。検算しながら読んで頂ければ幸いです。

sotobayasi
質問者

お礼

ありがとうございます。 変数分離のとこまではいけたんです。 >X(0)=X(L)=0 >Y(0)=Y(L)=0 とありますが X(L)=0 、Y(0)=0ですか? x>=0 y<=L でポテンシャルは0という条件からX(L)=0 、Y(0)=0と いう境界がひけるんですか? 何度もすいませんできればお答え願います。

関連するQ&A

  • 三次元の井戸型ポテンシャルについて

    量子力学の質問です。 三次元の井戸型ポテンシャル(一辺Lの立方体)についてなのですが、 (I)箱の端の波動関数を0とする条件 つまりψ(L,y,z,)=ψ(x,L,z,)=ψ(x,y,L)=0 のとき (II)周期的境界条件を条件にした場合 つまりψ(x,y,z,)=ψ(x+L,y,z,)=ψ(x,y+L,z)=ψ(x,y,z+L) という条件のとき とでエネルギー固有値を求めました。 すると(I)は E=h^2/(8πm)・(π/L)^2・{(n_x)^2+(n_y)^2+(n_z)^2} ただしn_x,y,zは0を含まない自然数。 (II)は E=h^2/(8πm)・(2π/L)^2・{(n_x)^2+(n_y)^2+(n_z)^2} ただしn_x,y,z=0,±1,±2... となりました。明らかに(I)と(II)ではエネルギー固有値がちがってきます。 これはなぜなのでしょうか? このほかのフェルミ波数等は同じ値をとるのにエネルギー固有値だけちがうというのはいいのでしょうか?

  • 井戸型ポテンシャルの外側のエネルギー固有値?

    無限に深い井戸型ポテンシャルの問題について質問です。 例えばポテンシャルが -L<=x<=L で0 その他がポテンシャル無限 とした時,井戸の外(x<=-L,L<=X)では波動関数は0となるのは理解できるのですが(ポテンシャル無限では粒子は存在できないから), このときのエネルギー固有値はどうなるんでしょうか? シュレーディンガー方程式を考えると (-h^2/2m∇^2+V)ψ=Eψ (V:ポテンシャル) で,ψ=0だから両片は恒等的に0ですよね? その場合エネルギー固有値って求まらないんでしょうか? (粒子が存在しないんだからエネルギー固有値だって0になるんじゃないかとも思うのですが...) よろしくお願いします。

  • 1次元の井戸型ポテンシャル

    以下のような1次元の井戸型ポテンシャル               V(x)=0 (-L<x<L)                 =V  (x<-L, x>L)       ただし 0<E<V 中の質量mの粒子について・・・・ この問題でグラフの交点を求めることによって、固有値が求められますが単純な計算では出せません。よって、以下のような課題を出されました。 上の問題で適当なVとLについて、固有値をニュートン法などの簡単なプログラムを組んで、数値的に計算して求めよ。また、そのときの固有関数を求めてプロットせよ。 以上の問題なのですが、簡単なヒントなのでよろしいので分かる方がいたら教えてください。お忙しい中ありがとうございました。    

  • 剛体ポテンシャルの摂動の問題ですが合ってますか?

    二次元剛体ポテンシャル V(x,y)=0 for |x|<(L/2) ,|y|<(L/2) V(x,y)=∞ otherwise について基底状態のエネルギー固有値と固有関数を求めた後 摂動ポテンシャルΔV(x,y)=axy、(a:摂動パラメータ)に対してエネルギーのずれを一次近似で求める問題です。 (解) Schrödinger方程式の解はu(x,y)=X(x)Y(y)と変数分離可能であるから X(x)=0 X(x)=A_x Cos[k x]+B_x Sin[k x] 境界条件X(±L/2)=0より非自明解が存在するためにはdet(・)=0より k_n=n_x π/Lである必要がある。 したがってエネルギー固有値はE_xn=ħ^2 π^2/(2 m L^2) n_x^2 完全性関係式によって規格化すると X_n(x)=√(2/L) Sin[n_xπx/L] for n_x=2,4,... X_n(x)=√(2/L) Cos[n_xπx/L] for n_x=1,3,... Y方向も同様にして Y_n(y)=√(2/L) Sin[n_yπy/L] for n_y=2,4,... Y_n(y)=√(2/L) Cos[n_yπy/L] for n_y=1,3,... 以上よりエネルギー固有値は E[n_x,n_y]=ħ^2 π^2/(2 m L^2) (n_x^2+n_y^2) と書ける。よって基底状態のエネルギー固有値は E[1,1]=ħ^2 π^2/(m L^2) 固有関数は u[1,1](x,y)=X_[1](x)Y[1](x)=(2/L) Cos[πx/L]Cos[πy/L] 摂動ハミルトニアンH'を考えるとH'=H_0+ΔV(x,y) 摂動論より基底状態のエネルギーE_0とすると一次近似は, E_0(1)=<u_0(0)|H'|u_0(0)>=<u_0(0)|H_0+ΔV(x,y)|u_0(0)>=E_0(0)+<u_0(0)|ΔV(x,y)|u_0(0)> したがってエネルギーのずれは ΔE=E_0(0)-E_0(1)=-<u_0(0)|ΔV(x,y)|u_0(0)>=-a (2/L)(∫{-L/2,L/2}x Cos[πx/L]^2 dx)(∫{-L/2,L/2},y Cos[πy/L]^2 dy)=0 と求まる。 上のように摂動論を考えたところエネルギーのずれがゼロになってしまいましたがこの問題の解答としてはこれで合ってるでしょうか。エネルギー変化がないということは摂動ハミルトニアンが非摂動ハミルトニアンに等しいということで理解すれば大丈夫ですか?

  • 井戸型ポテンシャルのアナロジーについて

    V(x)=∞ (x<0), V(x)=0 (0<x<L), V(x)=V0 (x>L)の許容エネルギーは深さが同じV0で、幅が2Lの有限井戸型ポテンシャルの奇関数解に対するエネルギーに等しい理由を教えてください。

  • 井戸型:シュレーディンガー

    井戸型ポテンシャルの問題です。 どうも数学的な計算が苦手なものでして・・・。 できれば詳しくお願い致します。 ポテンシャル U(x,y)=0、0≦x≦L、0≦y≦L U(x,y)=∞、それ以外 無限に深い井戸型ポテンシャル内の粒子運動を考える。 井戸内でのシュレーディンガー方程式は 【エッチバー:H とする】 -H^2/2m{∂^2φ(x,y)/∂x^2 + ∂^2φ(x,y)/∂y^2}+U(x,y)φ(x,y)=Eφ(x,y) である。固有関数は φ(x,y)=A・sin(aπx/L)sin(bπx/L)、(a,b=1,2,3,・・・)とする。 問1 基底状態(a=1、b=1)のエネルギー固有値を計算せよ。 問2 基底状態の固有関数を用いて、規格化条件からAを求めよ。

  • 箱型(井戸型)ポテンシャル

    このような問題なのですが、教えて下さい。 問1 2次元の無限に深い井戸型ポテンシャルの中の粒子運動を考える。          2L│_       │ │        │ │       │_│__x         L                                     【H:エイチバーの意】   H^2π^2         ny^2            エネルギー固有値は E=――――――(nx^2+――――)                       2mL^2          4            (nx=1,2,3・・・)、(ny=1,2,3、・・・)        (1)基底状態のエネルギー固有地をH、π、m、Lで表せ。    (2)第4励起状態(5番目)のエネルギー固有値をH、π、m、Lで表し、      それを与えるnxとnyの組み合わせを全て求めよ。 問2 1次元の無限に深い井戸型ポテンシャルの中の粒子運動を考える。    エネルギー固有関数はφ(x)=√(2/L)・sin(nπx/L)である。    L=1.0×10^-10m として、第1励起状態にある粒子を、    x=0とx=0.25×10^-10mの間に観測する確率を計算せよ。

  • 一次元の井戸型ポテンシャル中の自由粒子についてハミルトニアンを導くとこ

    一次元の井戸型ポテンシャル中の自由粒子についてハミルトニアンを導くところなんですが 全エネルギー E = p^2 / 2m + U(x) --(A) p <- -ih d/dx (hは棒付き) --(B) ∴ H^ = (-h^2 / 2m) d^2/dx^2 + U(x) --(C) において、 (1) (B)運動量演算子 -ih d/dx がいきなりでてくるのがわかりません。教科書など見てもこの導き方が載っていません この運動量演算子というのは波動関数に作用させると運動量になるというものなのでしょうか (2) (C)ハミルトニアンは演算子なのに、U(x)の部分はただのスカラーになっていますがいいのでしょうか (3) (1)で運動量演算子を波動関数に作用させたものが運動量ならば、波動関数に(C)を作用させたものは、(運動エネルギー)+(ポテンシャルエネルギー×波動関数)になってしまいませんか? そうするとシュレーディンガー方程式は (運動エネルギー)+(ポテンシャルエネルギー×波動関数)=(全エネルギー×波動関数) となって、次元が合わないような状況になってしまいませんか? 質問の意味がわからなかったらすぐ補足するので、1つでもいいので教えてください。よろしくお願いします。

  • 井戸型ポテンシャルについて

    1次元井戸方ポテンシャル(0<x<L,V=0 x<0,x>L,V=∞)の問題で、固有エネルギーEiがEcより小さなすべての固有状態の数N(E)を求めよという問題があるのです。が、調べたところ、これを解くためにはまずこの問題での固有エネルギーを出して、Ei<Ecを満たす最大のEiをEとして、n=N(E)として、エネルギー固有値の式から出せばいいみたいなのですが、これでは全てではなく、Ei=Eとなる時のnの値しか出ないような気がするのですが…。N(E)はEi<Ecを満たすnの総和じゃないのですか?どなたか教えてください。かなり困ってます。

  • 再び井戸型ポテンシャル…

    すみません、再びなのですが、今度は2次元井戸方ポテンシャル(0<x<L,V=0 x<0,x>L,V=∞)の問題で、固有エネルギーEiがEcより小さなすべての固有状態の数N(E)を求めよという問題なのですが、今度はN(E)が円の面積(Nx,Ny座標での)になっているというイメージがどうもよくわかりません…。なぜそうなるのでしょうか?教えていただけませんか?