OKWAVEのAI「あい」が美容・健康の悩みに最適な回答をご提案!
-PR-
解決
済み

図形の問題で困っています

  • 困ってます
  • 質問No.105184
  • 閲覧数31
  • ありがとう数5
  • 気になる数0
  • 回答数5
  • コメント数0

お礼率 77% (84/108)

以下の問題がどうしても解けません。
アドバイスよろしくお願いいたします。

「半径1の円に内接する△ABCにおいて、AB=√3 、BC=1/2であるときCAを求めよ」


正弦定理から余弦へ転換させて解こうとしましたがうまくいきませんでした(>_<)
よろしくお願いいたしますm(_ _)m
通報する
  • 回答数5
  • 気になる
    質問をブックマークします。
    マイページでまとめて確認できます。

質問者が選んだベストアンサー

  • 回答No.1
レベル8

ベストアンサー率 65% (17/26)

∠BAC を a とすると,CA は

2 cos (30 - a)

となります(図を描いてみましょう).

円の中心と BC とがなす三角形の円の中心での角が 2a であることより,

sin a = 1/4,cos a = √15/4

であることがわかるので,加法定理で求められそうな気がします.
お礼コメント
makihiro

お礼率 77% (84/108)

ありがとうございました。m(_ _)m
内接する四角形を作って-30+aの角を使ったのですね。
実はcosCから余弦を適用したら一発で解けてしまいました(^^;
投稿日時 - 2001-07-17 14:32:36
-PR-
-PR-

その他の回答 (全4件)

  • 回答No.2
レベル14

ベストアンサー率 57% (1014/1775)

作図と解析を適当にこき混ぜて使うというのも、なかなか便利ですよ。 「半径1の円に内接する△ABCにおいて、AB=√3 、BC=1/2であるときCAを求めよ」 この円の直径が2、そこへ√3、と来たんだから、とりあえず、 Aを通る直径をADとしてみると、AD=2, AB=√3、だから、BD=1はオッケーすよね。ABDは直角三角形だ。そして円の中心OとB,Dが作る三角形OBDは正三角形で一辺が1。 ...続きを読む
作図と解析を適当にこき混ぜて使うというのも、なかなか便利ですよ。

「半径1の円に内接する△ABCにおいて、AB=√3 、BC=1/2であるときCAを求めよ」

この円の直径が2、そこへ√3、と来たんだから、とりあえず、
Aを通る直径をADとしてみると、AD=2, AB=√3、だから、BD=1はオッケーすよね。ABDは直角三角形だ。そして円の中心OとB,Dが作る三角形OBDは正三角形で一辺が1。

で、BC=1/2ですけど、こりゃ何だか中途半端な場所ですね。だからここから解析幾何に移動~ポン!

O=(0,0),A=(-1,0), D=(1,0)とする。OBDが正三角形ですからB=(1/2,√3/2)、そしてC=(x,y)
ここに、Cは
円周上にあって、...
(x^2)+(y^2)=1 
Cとの距離が1/2 ....
|B-C| = 1/2
という問題になります。

|B-C|^2 = 1/4
ですが、この左辺は
|B-C|^2 = (x-1/2)^2 + (y-√3/2)^2 = (x^2)+(y^2) -x -(√3)y + 1
ですから、(x^2)+(y^2)=1より、
|B-C|^2 = 2-x -(√3)y
ということ。つまり
2-x -(√3)y= 1/4
です。

 すなわち
x +(√3)y = 7/4
という直線と、円
(x^2)+(y^2)=1
の交点がC=(x,y)ですね。二次方程式の問題です。解が2つ出る。2つとも使います。

x,yが2通り分かったら、あとは|C-A|を2通り求めるだけ。(図を描いて、2つ答があることを確認してみて下さい。)

いや、計算間違いはしょっちゅうやりますんで、ご自分でチェック宜しく。
お礼コメント
makihiro

お礼率 77% (84/108)

ありがとうございました。m(_ _)m
実は√3/cosC = 2を使ってcosCを求めて
余弦を使い
3 = 1/4 + AC^2 - 2 x 1/4 x AC x cosC
で簡単に求めることができました。
投稿日時 - 2001-07-17 14:36:07

  • 回答No.3
レベル9

ベストアンサー率 29% (14/47)

余は三角形ABCと三角形AOCにたいして余弦定理を適用したぞ。 するとそれぞれ (AC*AC)=13/4ー√3cosB---------(1) (AC*AC)=2ー2cosB =4-4cosB*cosB----------(2) となるので これをcosBについて解き(二次方程式)、(1)に代入するとこたえがでるぞ。 ...続きを読む
余は三角形ABCと三角形AOCにたいして余弦定理を適用したぞ。
するとそれぞれ
(AC*AC)=13/4ー√3cosB---------(1)
(AC*AC)=2ー2cosB
=4-4cosB*cosB----------(2)
となるので
これをcosBについて解き(二次方程式)、(1)に代入するとこたえがでるぞ。
お礼コメント
makihiro

お礼率 77% (84/108)

ありがとうございました。m(_ _)m
cosCの余弦でも求めることが出来ました。
投稿日時 - 2001-07-17 14:37:29
  • 回答No.4
レベル9

ベストアンサー率 29% (14/47)

余は三角形ABCと三角形AOCにたいして余弦定理を適用したぞ。 するとそれぞれ (AC*AC)=13/4ー√3cosB---------(1) (AC*AC)=2ー2cos2B =4-4cosB*cosB----------(2) となるので これをcosBについて解き(二次方程式)、(1)に代入するとこたえがでるぞ。
余は三角形ABCと三角形AOCにたいして余弦定理を適用したぞ。
するとそれぞれ
(AC*AC)=13/4ー√3cosB---------(1)
(AC*AC)=2ー2cos2B
=4-4cosB*cosB----------(2)
となるので
これをcosBについて解き(二次方程式)、(1)に代入するとこたえがでるぞ。
  • 回答No.5
レベル8

ベストアンサー率 45% (15/33)

先ず、XとY軸を描いて点(0,0)を中心とし半径1の円と点(1,0)を中心とし半径1/2の円を描いて下さい。 そして点Aを(-1/2,-√3/2)、点Bを(1,0)とします。すると点Cは?そう先の二つの円の交点ですね。あとは簡単。 点Cを(a,b)とすると、 aa+bb=1…あ (a-1)(a-1)+bb=1/4…い あ、い を解いて a=7/8,b=+√15/8,-√15/8 よって(AC ...続きを読む
先ず、XとY軸を描いて点(0,0)を中心とし半径1の円と点(1,0)を中心とし半径1/2の円を描いて下さい。
そして点Aを(-1/2,-√3/2)、点Bを(1,0)とします。すると点Cは?そう先の二つの円の交点ですね。あとは簡単。
点Cを(a,b)とすると、
aa+bb=1…あ
(a-1)(a-1)+bb=1/4…い
あ、い を解いて
a=7/8,b=+√15/8,-√15/8
よって(AC)の二乗は 23/8+3√5/8,23/8-3√5/8
となります。答えは上の平方根となります。
何故かは考えてみて下さい。あと(AC)を解く時は
(AC)の二乗=aa+bb+a+√3b+1
_ = 1 +a+√3b+1
とした方が速く、しかも計算間違いが少なくなります。
他にももっと分かり易く良い方法はあると思いますがとりあえず…
お礼コメント
makihiro

お礼率 77% (84/108)

ありがとうございました。m(_ _)m
投稿日時 - 2001-07-17 14:39:29
このQ&Aで解決しましたか?
関連するQ&A
-PR-
-PR-
このQ&Aにこう思った!同じようなことあった!感想や体験を書こう
このQ&Aにはまだコメントがありません。
あなたの思ったこと、知っていることをここにコメントしてみましょう。

その他の関連するQ&A、テーマをキーワードで探す

キーワードでQ&A、テーマを検索する
-PR-
-PR-
-PR-

特集


いま みんなが気になるQ&A

関連するQ&A

-PR-

ピックアップ

-PR-
ページ先頭へ